
Thesis mid-term report.
"Towards unified code generation for libms and filters."

May 4, 2016

PhD student Anastasia Volkova

Thesis director Jean-Claude Bajard

Advisors Thibault Hilaire, Christoph Lauter

1 Introduction

A digital filter, or a general digital signal processing system, operates on a discrete input data to produce
a discrete output by means of a computational algorithm. We are interested in such algorithms that are
implemented for control and signal processing application in embedded systems. Regardless of the type of
embedded system, the data processed by the digital system is ultimately stored in memory registers with
finite capacity. Therefore, all the computations are performed in finite-precision arithmetic and thus result in
an inherent limitation on the accuracy of the result. In this thesis we investigate the effects of finite-precision
implementation of digital filters. We apply a rigorous computer arithmetic approach to evaluate the errors
due to those effects in order to provide a reliable implementation.

We consider implementation of discrete Linear Time-Invariant (LTI) systems [1] and more specifically
infinite impulse response filters, which means that in response to a brief initial input the filter output does
not become exactly zero past a certain point but continues indefinitely.

A discrete-time digital filter is usually characterized by its transfer function. A transfer function is a
representation in frequency domain of the relation between the input and output of a LTI system with zero
initial conditions. It can be expressed as the Z-transform of the inputs and outputs of the filter [2] and it

has the form H(z) =

n∑
i=0

biz
−i

1+
n∑
i=1

aiz−i
, where n is the order of the filter [3]. Designing a filter consists of designing

a transfer function which meets the filter specifications (e.g. degree).
A given transfer function may be evaluated in many different ways, just like polynomials can be evaluated

in many different ways [4]. Further in this work we will refer to filter structures as to different ways to evaluate
a filter; and to filter realizations as to concrete instances of a filter structure. All filter structures describe
different computational algorithms of the same mathematical object, the transfer function. A lot of structures
have been developed over time, such as Direct Forms [5], State-Space [6], Wave [7], and every year some new
ones appear, for example a new wave structure appeared in March 2016 [8].

Once the filter structure is chosen, software or hardware implementations may be provided. The software
implementation is providing a list of formal instructions that are supported by a hardware target (e.g. CPU).
The hardware implementation is for instance a generation of a circuit architecture, such as VHDL [9], which
will carry out the filter algorithm. We will concentrate on software implementation of digital filters.

In software implementation numbers can be represented in different ways, consequently arithmetic oper-
ations are carried out differently. Most of embedded digital signal processing algorithms use the fixed-point
arithmetic [10]. With this representation the numbers are stored in a machine as integers (mantissa).
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Figure 1: Automatic filter generator flow.

However, on each step of the filter implementation various issues arise. First, the given transfer function
is an exact mathematical object, which needs to be quantized for a finite-precision implementation. The
quantization of the filter coefficients perturbates the location of the filter poles and zeroes. As a result, the
actual filter output differs from the ideal one.

Moreover, similar to the polynomial evaluation [4], filter realizations have different numerical properties
in finite-precision arithmetic. Some structures are more efficient in terms of number of operations or storage
elements required for their implementation, and others provide advantages such as improved numerical sta-
bility and reduced round-off error. In order to choose the best realization according to speed, error, power
consumption or some other criteria one must be able to compare them fairly. Various quality measures exist
for filters. However, these measures are often structure-specific, so the comparison with other realizations is
impossible or rather complicated.

Finally, using finite-precision arithmetic leads to rounding errors within the filter computations. Also, it
is possible for internal computations to overflow, which leads to eventual non-linearity of the implemented
filter or. Moreover, in some applications, such as avionics, overflows can cause serious system faults.

The transfer function quantization, rounding errors, risk of overflows - all these finite wordlength effects
lead to degradation of the actually implemented filter. Therefore, an accurate error analysis of the filter im-
plementation is required. In the signal processing domain this question is usually addressed from a statistical
point of view [11]. However, this approach does not give a mathematical guarantee on the error of the filter
implementation. In some applications a low probability of filter failure is tolerated. However in others, such
as aeronautics, it is a crucial to have a rigorous error-bound. Moreover, the filter analysis techniques vary
from structure to structure because of lack of a unified representation.

This thesis is a part of an ANR project "Metalibm", one of goals of which is to provide an automatized
filter-to-code generator, which will encapsulate the above described process under a unified work-flow and
provide a reliable implementation for any LTI system. The idea is to provide rigorous evaluation of the errors
due to a finite-precision implementation. This will allow to determine the implementation parameters (struc-
ture, fixed-point formats for number representations, order of arithmetic operations etc.), which guarantee a
user-given error bound.

The proposed generator is based on the Specialized Implicit Framework (SIF), a modeling tool, which was
introduced in [12]. It allows us to represent any LTI algorithm in a unified form which solves the problem
of realizations comparison. Therefore, once rigorous error analysis techniques are developed for the SIF
formalism, they can be applied upon any linear realization.

A simplified scheme of the proposed work-flow is given in Fig. 1. The filter-to-code generation can be
divided into four stages:

1. given a transfer function, choose a structure and represent the filter realization in the SIF formalism;

2. evaluate the quality of the chosen filter realization;

3. determine the parameters of the fixed-point representations of filter variables which will ensure that no
overflow occurs and the user-provided error-bound on the filter implementation is met;
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4. given software or hardware specifications, generate the fixed-point code or a VHDL scheme.

Stages 1 to 4 can be repeated for all possible structures. This generator can be also used as a black-
box tool which does not require any interference in the decision-making process of filter implementation.
Given a transfer function and quality criteria (e.g. output error bound and parallelism requirement), the
generator chooses a structure which suits the best the given criteria and generates software and hardware
implementations. To achieve this, all the stages of the generator are plugged into various optimization
routines (e.g. structure choice or fixed-point formats optimization under given criteria).

Some of the most popular filter structures, such as Direct Forms and state-space have already been
represented in the SIF formalism [12], [13], [14]. Various filter quality measures have been adopted for the
SIF formalism as extension of all the classical measures defined for state-space realizations. Some new, more
realistic, measures have been introduced in [15]. For hardware implementations these measures take into
account different impact on the output error of different variables. An approach on bounding the variables
of a filter implementation has been proposed in [16]. The final stage of the generator was developed in
[17], where an automatic Fixed-Point code generation tool for the SIF has been proposed and is based on
particular implementation of Sum-of-Products (SoPs).

However, various challenging questions of filter implementation have not been investigated, yet. The first
goal of the thesis is to get deep insight on the whole filter-to-code generation process. Then, to provide a
rigorous evaluation of the rounding errors that occur in the implemented filter and, consequently, provide a
fixed-point implementation, which guarantees an error-bound criteria and that no overflow occurs.

In order to get familiar with the proposed filter implementation process in general and with SIF in
particular, we provided an algorithm for a conversion of new structure, Lattice Wave digital filters (a highly-
modular parallel structure), to the SIF formalism. A fair comparison of the Lattice Wave filters to the
structures that are already present in the SIF framework was performed using various sensitivity-based
measures. This work led to a publication at the 2015 European Signal Processing Conference (EUSIPCO
2015) [18].

The main contribution of the thesis so far is ensuring the Stage 3 of the filter generator, i.e. providing a
reliable implementation of digital filters in Fixed-Point arithmetic. To deduce the fixed-point representations
of all variables involved in the filter computation we must first deduce their range. As it was described above,
in [16] an approach on bounding the output of a linear filter was proposed. This approach is based on a
computation of a largest possible peak value of the output of a filter[19]. However, this measure itself cannot
be computed exactly and the error analysis of its computation is not trivial. We proposed an algorithm of
reliable computation of this measure in arbitrary precision. We provided rigorous numerical analysis of the
algorithm as well as its implementation. This work led to a publication at the 22nd IEEE Symposium on
Computer Arithmetic (ARITH22) [20].

However, deducing the range of the filter is not sufficient. Due to rounding errors of the internal compu-
tations within the filter, the output interval of the implemented filter differs from the ideal one. Moreover,
since the filters are recursive, the error propagation is non-linear. Taking this effect into account is crucial
to ensure that no overflows occur.

We applied the WCPG measure to provide a rigorous approach on LTI filters error analysis which does
not use any simulations but proofs. We take into account the error though filter propagation and provide
a fixed-point implementation, which guarantees that no overflow occurs. Moreover, we proved that the
determined most significant bit positions are never overestimated more than by one bit. This work led to a
publication at the 49th Asilomar Conference on Signals, Systems and Computers (Asilomar 49) [21].

The second part of the "Metalibm" project is providing a code generator for mathematical functions. The
code generator provides correctly-rounded implementations for various elementary functions. The second goal
of my work is drawing a parallel between digital filters generation and mathematical functions implementation
and will be addressed in the second part of the thesis.
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2 State of the Art

Notation: Throughout the article matrices are in uppercase boldface, vectors are in lowercase boldface,
scalars are in lowercase. All matrix inequalities and absolute values are considered element-by-element.

2.1 Linear Time-Invariant Filters

A Linear Time Invariant (LTI) filter is a numerical application that transforms an input signal {u(k)}k≥0

into an output signal {y(k)}k≥0 (u(k) and y(k) may be vectors or scalars), where k ∈ N is the step time.
We consider here only stable Infinite Impulse Response (IIR) systems and, for generalization purposes, with
Multiple Inputs Multiple Outputs (MIMO), i.e. vectors u(k) and y(k).

In general the input-output relations of such systems are represented by a transfer function. As a network
structure, such function is most commonly represented by a Signal Flow Diagram (e.g. see Fig. 3 ).

An analytical representation of a LTI IIR filter is the state-space representation [1]. It describes the
evolution of the state vector x(k) from the previous step and the input, while a new output y(k) is computed
out of the current state and the input:

H
{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(1)

where u(k) ∈ Rq×1 is the input vector, y(k) ∈ Rp×1 the output vector, x(k) ∈ Rn×1 the state vector and
A ∈ Rn×n, B ∈ Rn×q, C ∈ Rp×n and D ∈ Rp×q are the state-space matrices of the system. Unlike a
mathematical function, the output at time k depends not only on in the input at time k but also on the
internal state of the filter (generally determined from the previous inputs and outputs). The system (??) is
said to be stable iif its spectral radius is less than 1 [1].

There exist some methods of filter analysis on signal flow graphs. However, these methods have been
developed for particular filter structures and are very difficult to be applied on an arbitrary LTI filter. Though
the graph representation itself is not convenient for some mathematical approaches to be applied.

Therefore, we prefer an analytical representation. In our automatized filter-to-code generator we use an
extension of the state-space representation, which will be described in the next section.

2.2 Fixed-Point arithmetic

The considered filters are supposed to be implemented using signed Fixed-Point (FxP) arithmetic with two’s
complement representation [22], [10].

Let t be a FxP number. It can be written as t = −2mtm +
∑m−1

i=` 2iti, where ti ∈ B = {0, 1} is the ith

bit of t and the Fixed-Point Format FxPF (m, `) gives the position of the most (MSB) significant and least
(LSB) significant bits positions respectively, as shown in Fig. 2. The wordlength w is given by w = m−`+1.

m+ 1 −`
s

w

−2m 20 2−12m−1 2`

Figure 2: Fixed-point representation (here, m = 5 and ` = −4).

The quantization step of the representation is 2`. Further in the report the LSB position ` sometimes will
be substituted directly with m− w + 1.

The real number t is represented in machine by the integer T , such that T = t · 2−`, where T ∈
[−2w−1; 2w−1 − 1] ∩ Z.

Let y(k) ∈ R be an output of a digital filter and suppose that the wordlengths wy are fixed. Then,
determining the Fixed-Point Formats for y(k) means to find a MSB vector my such that for all k

yi(k) ∈ [−2myi ; 2myi − 2myi−wyi+1]. (2)
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Obviously, we are interested in the least possible MSB, which guarantees (2): any greater MSB would yield
to a larger quantization step, hence round-off noise, at constant wordlength.

It should be noted that we will follow the multiple wordlength paradigm, i.e. the formats for each element
of the input and output vectors can be different. This permits to take into account different impact that
different variables have on the filter behavior.

3 Specialized Implicit Framework

In this section we will state the basic notions of the Specialized Implicit Framework (SIF), which is a basic
brick of the automatized filter-to-code generator. This framework permits to represent any LTI filter in a
unified form and therefore to unify the analysis approach. Numerous quality measures have been adapted
for this framework. In this section, however, only some sensitivity-based measures are reminded.

One of the contributions of the thesis is introducing an algorithm for the conversion of Lattice Wave
Digital filters to SIF. It is a simple translation of the lattice wave structure description into analytical
representation, which gave an insight of the Stages 1 and 2 of the filter generator. It yielded a deeper
understanding of the filter quality measures and of further development of automatized structure choice
approach. A fair comparison of lattice wave structures with several other popular realizations is provided as
well. The conversion algorithm was implemented in Matlab and tested on random filters.

3.1 State of the Art

In order to encompass all the possible realizations for a given transfer function (direct forms, state-space, cas-
cade or parallel decomposition, or some more exotic realizations like the ρDFIIt ones [23, 24]), the Specialized
Implicit Framework (SIF) has been proposed in [12].

SIF is an extension of the state-space realization, modified in order to allow chained Sum-of-Products
(SoP) operations. All the input-output relationships with delays, computation order, multiplications by
constants and additions can be represented with the SIF.

This macroscopic description is more suited for the analysis than a graph relationship as it gives direct
analytical formula for the finite precision error analysis [12].

Denote u(k) and y(k) the input and output respectively. Variables that are stored from one step to the
other are in the state vector x(k), while intermediate results are collected in the vector t(k). Then, the SIF
is the following system:

H




Jt(k + 1) = Mx(k) + Nu(k)
x(k + 1) = Kt(k + 1) + Px(k) + Qu(k)

y(k) = Lt(k + 1) + Rx(k) + Su(k)
(3)

Note that J must be lower triangular with 1 on its diagonal, so the first value of t(k+1) is first computed,
then the second one is computed using the first and so on (thus,the computation of J−1 is not necessary).
The implicit term Jt(k + 1) naturally serves for preservation of the computation order specific for each
realization. Its transfer function H can be obtained analogously to the state-space realization from the
matrices J ,K, . . . ,S.

Denote Z to be a set of the SIF coefficients:

Z ,



−J M N
K P Q
L R S


 . (4)

Various filter analysis measures [12, 25, 26] have been explicitly introduced for this framework along with
rigorous error analysis algorithms. Some of the sensitivity measures are presented further in this section and
are extensions of classical measures for the state-space structure [27]. These are called a priori measures,
because they evaluate the sensitivity of a filter to potential quantization errors, i.e. before we know anything
on its software implementation.
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3.1.1 Sensitivity-based measures for SIF

Obviously, after implementation in finite-precision the coefficients Z will be modified into Z+∆Z, where the
errors ∆Z depend on the coefficients values and word-lengths, according to Fixed-Point formats. In order
to evaluate how the filter characteristics may be modified by the quantization of the coefficients, sensitivity-
based measures are usually used [27]. For simplicity, in this section we suppose that the filter is Single Input
Single Output.

The sensitivity of the transfer function H with respect to the coefficients Z is given by ∂H
∂Z . Analytical

form of this measure is usually developed specifically for each realization. However, once obtained for SIF
[12], it can be applied to any realization. Unfortunately, this commonly used measure is not fair and does
not reflect how the coefficients’ quantization changed the transfer function H into H+∆H since the absolute
error of the coefficients may not all have the same magnitude order.

For that purpose, a stochastic sensitivity-based measure has been proposed and developed with respect
to FxP considerations in [25]. Here, quantization error ∆Zij of the coefficient Zij is considered as a random
variable, uniformly distributed in [−2

`Zij−1 ; 2
`Zij−1 ] where `Zij is the LSB of the Zij . Then, the error transfer

function ∆H can be seen as a transfer function with random variables as coefficients. From [25] and with
first order approximation of ∆H with the derivative ∂H

∂Z its second-order moment can be evaluated with

σ2
∆H =

∥∥∥∥
∂H

∂Z
×Ξ

∥∥∥∥
2

2

(5)

where

Ξij :=





0 if Zij ∈ {0,±1}
2
−wZij

+1

√
3
bZijc2 otherwise

(6)

and wZij is the word-length fixed to represent Zij and bxc2 denotes a nearest power of 2 smaller than x .
Thus, σ2

∆H captures more information on the transfer function error.
If all the coefficients have the same word-length, then a normalized transfer function error measure is

defined by
σ̄2

∆H ,

∥∥∥∥
∂H

∂Z
× bZc2

∥∥∥∥
2

2

. (7)

This normalization is useful for a concrete realization analysis on the design stage, when word-lengths are
not known.

The same approach was applied for the poles {λi} of the systems, or more interestingly to their moduli
|λi| in order to ensure filter’s stability after quantization. Analogously, the stochastic pole error σ2

∆|λ| was
introduced in [25]. It can be computed as

σ2
∆|λ| =

n∑

i=1

∥∥∥∥
∂ |λi|
∂Z

× Ξ

∥∥∥∥
2

F

(8)

Likewise to (7) the word-length independent normalized error pole measure σ̄2
∆|λ| may be computed.

Using these a priori measures, we can fairly compare various filter realizations of a user-given transfer
function. Also, since some of the filter realizations can be optimized [28], these measures can be used as
criteria.

3.2 Contribution: representing Lattice Wave Digital Filters with Specialized Implicit
Framework

Lattice Wave Digital Filters (LWDF) is a class of recursive Wave Digital Filters that inherit several good
properties, such as stability for implementation and possibility of suppression of parasitic oscillations. LWDF
can be either derived from analog reference filters [7] or using explicit formulas [29].

The LWDF structure is highly modular and has a high degree of parallelism, which makes them suitable
for a VLSI implementation. Their good stability qualities [7] make them good candidates for adaptive filtering
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and Hilbert transformers design [30]. LWDFs are considered in numerous different applications, including
studies on linear-phase structures [31], design of multiplierless LWDFs [32] and energy-efficient structures
[33].

However, all studies on fixed-point implementation of lattice wave structures are performed a posteriori,
i.e. when the implementation parameters are known [34]. These are commonly two- or three-step algorithms
that propose coefficients quantization scheme based on solving optimization problems for infinite-precision
filter models and then adjustment of finite-precision filter. These are specific approaches to the LWDF
analysis and are not really suitable for a fair comparison with other structures.

Providing a LWDF to SIF conversion algorithm leads to several benefits. First of all, it permits us to
fairly compare the lattice wave structures with various different realizations using unified measures. Secondly,
a direct and reliable filter implementation approach, which does not use any filter simulations but is based
on mathematical proofs, can be applied.

3.2.1 Lattice Wave structure to be converted

LWDF are represented by two parallel branches, which realize all-pass filters. These all-pass filters are
composed of cascaded first- and second-order symmetric two-port adaptors. Its data-flow diagram (DFG) is
shown on Figure 3.
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Figure 3: Data-flow diagram of a low-pass LWDF.

Each adaptor contains three adders and one multiplier. According to [29], the adaptor coefficients γ may
be guaranteed to fall into the interval −1 < γ < 1. In [7] it was proposed to use Richards’ structures for
adaptors, which are shown on Figure 4. The interval (1;−1) is divided into four sub-intervals, therefore there
are four types of structures, in which the multiplication is performed by a 0 < α ≤ 1/2.
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Figure 4: Two-port adaptor structures, for which actual multiplier α is computed out of γ.

It was shown in [7] that in order to make sure that only one passband and only one stop-band occur, the
orders of the upper and lower branches must differ by one, such that the overall order n of the filter is odd.
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The high-pass filter may be obtained simultaneously by changing the sign of the all-pass lower branch.
In [29] explicit formulas for LWDF transfer function design for several common filters such as Butterworth,

Cauer (elliptic) and Chebyshev were presented. However, LWDF structure can realize all transfer functions
that can be achieved by the families of reference filters considered so far, although not strictly all. It should be
pointed out, that for common applications filter requirements are expressed not in terms of transfer functions
but in terms of loss and phase delay that needs to be located in tolerance bounds

3.2.2 LWDF-to-SIF conversion algorithm

Due to the high modularity of the LWDF, the conversion between its DFG and SIF is not difficult. As seen
on Figure 3, LWDF consists of two branches, and each branch is a cascade of stages. Each stage in its turn
may be considered as a cascade of subsystems of two types, as shown on Figure 5.

z�1

�1

o1

o2i1

i2

(a) Type A

o1

i1

�2
z�1

(b) Type B

Figure 5: A stage is considered as cascade of subsystems of type A (Subfig. a) or type B (Subfig. b).

Therefore, the basic brick for cascade sequence is actually not a simple adaptor but a two-port adaptor
with one output delayed (Type A: Figure 5a) and a 1-input/1-output adaptor with delay (Type B: Figure
5b). Then, given filter’s coefficients γ, the conversion algorithm can be divided into following steps:

Step 1: Deduce SIF representation (matrix Z) for each subsystem according to its γ value;

Step 2: Cascade subsystems into stages;

Step 3: Cascade stages into branches;

Step 4: Regroup two branches SIFs into final filter according to Figure 3.

The first step can be easily done by applying SIF notation to the subsystem DFG. Two subsystems per
each adaptor structure must be considered, overall 8 basic bricks. For example, for −1 < γ < 1/2 the
structures to be converted into SIF can be described with DFGs on Figure 6.
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Figure 6: (a) Type A subsystem with adaptor of type 4. (b) Type B subsystem with adaptor of type 4.

For instance, applying SIF definition (3), we can deduce that SIFs ZA and ZB for subsystems shown on
Figure 6 are:

ZA ,

−JA MA NA

KA PA QA

LA RA SA

 =


−1 0 0 1 1

α −1 0 0 1

0 1 0 0 0

−1 1 0 0 0

0 0 1 0 0

 ZB ,

−JB MB NB

KB PB QB

LB RB SB

 =


−1 0 1 −1

α −1 1 0

0 −1 0 0

−1 1 0 0

 (9)

However, cascading for the Step 2 requires a special approach, since it is not an output-to-input link but
a "loop": type A subsystem HA is a MIMO filter, which is cascaded with a SISO filter HB. If a standard
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cascading approach is used, the condition of matrix J being lower triangular is not fulfilled. We provided
explicit formulas for the cascading of such SIFs and use topological sort [35] to re-triangularize the matrix
J . However, due to heaviness, the formulas are not presented in this report.

The sequential cascading for Step 3 is performed using explicit formulas from [13]. Notate, that even on
the Step 1 the matrices ZA and ZB are sparse. Each cascading (on Step 2 and 3) would produce an even
more sparse matrix.

3.2.3 Numerical results

The above algorithm was implemented in Matlab, since the Matlab version of FWR1 toolbox was used for
the SIF analysis.

The following example is based on the LWDF coefficients, which were obtained with Lattice Wave Digital
Filters2 toolbox for Matlab. This toolbox is based on explicit formulas introduced in [29]. However, the
LWDF-to-SIF conversion algorithm requires only the γs, therefore does not depend on software providing
coefficients. So, any procedure producing the LWDF coefficients via [36] can be used as preliminary step.

A Matlab-generated low-pass 5th order Butterworth filter with cutoff frequency 0.1 was considered. Four
realizations of this transfer function were considered: LWDF, balanced state-space, Direct Form I and ρ
Direct Form II transposed (ρDFIIt [24]). Only the normalized (i.e. input-width independent) versions of
measures were used.

The result SIF for the considered LWDF structure is a sparse 22 × 22 matrix shown below. It has
only three types of non-zero elements: adaptor coefficients αi and plus/minus ones represented by filled and
contour circles respectively:

Z =

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

1/2

↵2

↵3

↵4

↵5

↵1

As described in [23, 24], the ρDFIIt is parametrized by n extra parameters. It can be a subject of multi-
criteria optimization. For this example a tradeoff function minimizing weighted sum of normalized transfer
function and pole errors was used. Excellent results may be observed in Table 1.

However, Direct Form I showed to be very ill-conditioned for the considered filter, and its pole error
cannot be computed. It is obvious, that implementing such a filter with this structure is not a good idea.

Thanks to the minimal number of coefficients, the LWDF approaches in its normalized transfer function
error the optimized ρDFIIt. The specific alternating distribution of LWDF poles [34] leads to good results
in pole error measure. Therefore, ρDFIIt may be a good alternative.

The state-space realization chosen is a balanced state-space. It is expectantly sensitive to quantization
errors (it has much more coefficients).

To conclude, the conversion from LWDF to SIF permits to apply numerous classical and novel sensitivity
measures upon any LWDF realization and any other. However, to provide a consistent implementation
comparison a code optimization and generation chain FiPoGen [26] + FloPoCo3 is required.

1https://gforge.inria.fr/projects/fwrtoolbox/
2http://ens.ewi.tudelft.nl/~huib/mtbx/index.php
3http://flopoco.gforge.inria.fr/
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Realization size(Z) coeff. σ̄2
∆H σ̄2

∆|λ|

LWDF 22×22 5 0. 3151 0.56
state-space 6× 6 36 1.15 5.75

ρDFIIt 11×11 11 0.09 0.45
DFI 12×12 11 1.42e+6 -

Table 1: Different realizations comparison.

4 Reliable Fixed-Point implementation of Digital Filters

Once the filter realization is chosen, we need to provide Fixed-Point code to compute the filter. Given
implementation constraints, such as output error bound, and wordlength constraints for all variables we must
choose Fixed-Point Formats for the implementation such that the output codeensures that no overflow
occurs. It should be noted that different variables can have different wordlengths and, most important,
different fixed-point formats according to the impact they have on the filter behavior, which is often neglected
in currently used approaches.

A reasonable approach is to first determine the output interval of the filter and then determine the
format within the wordlength constraints if possible. However, the propagation of rounding errors induced
by finite-precision arithmetic must be taken into account.

In the signal processing error analysis is often performed using a statistic approach, where the coefficient
quantification errors are considered as random "noise" with normal or uniform distribution [37]. Moreover
the algorithms to compute the output interval of a filter give no guarantee on the result and do not take
into account the filter computation error. Usually they consist in performing numerous (non-exhaustive)
simulations via software tools such as Matlab. This approach does not give any guarantee on the non-
overflow.

In order to compute the largest possible output interval for a filter, we use the result proposed in [16],
based on a property of bounded-input bounded output systems [19, 38] where the largest possible peak value
of the output is determined by the use of the Worst-Case Peak Gain (WCPG) measure. Error propagation
analysis in LTI systems is directly dependent on the reliable evaluation of the WCPG.

This measure is computed as an infinite sum and contains large powers of a matrix, which makes the
error analysis non-trivial. We provided a rigorous approach on the WCPG evaluation and implemented it as
a C library.

Further, we investigated the error propagation through the filters and provided an algorithm for determin-
ing the Fixed-Point Formats with mathematically proven guarantee that no overflows occur. In our approach
the computed MSB positions are either exact or overestimated by at most one bit. Therefore, we solved the
basic brick problem for the Stage 3 of the filter generator work-flow.

The section is organized as follows. First, we state some previous results on determining the output
interval of a filter and give the reader an idea how it can be used in LTI systems error analysis. Then,
we present our algorithm for reliable determination of the WCPG measure. Finally, we perform the error
analysis of a filter implementation in Fixed-Point and give a rigorous algorithm on determining the Fixed-
Point formats.

4.1 State of the Art

Although in our filter generator the SIF representation is used for filters, in this chapter we provide results
for the state-space realization, especially since the conversion between SIF and state-space is easy. Indeed,
it can be established that the SIF equation (3) is equivalent in infinite precision to a state-space filter:

H
{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(10)
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with:
A = KJ−1M + P , B = KJ−1N +Q,
C = LJ−1M +R, D = LJ−1N + S.

(11)

It should be remarked that in finite precision the equation (10) corresponds to a different set of coefficients
than the one in (3). However, this issue can be resolved by taking into account the computational errors in
(11).

In [16] a following theorem giving an output interval of a stable LTI filter was stated.

Proposition 1 (Worst-Case Peak Gain theorem [16]). Let H be a state-space system. If an input {u(k)}k≥0

is known to be bounded by ū (∀k ≥ 0, |ui(k)| ≤ ūi, 1 ≤ i ≤ q), then the output {y(k)}k≥0 will be bounded
iff the spectral radius ρ(A) is strictly less than 1. This property is known as the Bounded Input Bounded
Output (BIBO) stability [1].

Moreover, in that case, the output is (component-wise) bounded by

∀k, |y(k)| ≤ |Wū| , (12)

where W ∈ Rp×q is the Worst-Case Peak Gain matrix [19] of the system. It can be computed as

W := |D|+
∞∑

k=0

∣∣∣CAkB
∣∣∣ . (13)

This proposition can be completed when considering intervals for the input, instead of bounds (corre-
sponding to symmetric intervals). In that case, the Worst-Case Peak Gain matrix indicates by how much
the radius of the input interval is amplified on the output [16] (although this is not valid for the transient
phase, i.e. for the few first steps). Moreover, this bound can be achieved (up to any small ε > 0).

However, even in that case,Wū is a supremum we need to compute in order to deduce the output interval
for a BIBO stable filter with bounded inputs. Using the WCPG to bound all the variables involved in the
filter computation algorithm, we can determine their fixed-point representation. We will show further in
this section that for the rigorous determination of Fixed-Point Formats an arbitrary precision computation
algorithm for the WCPG is required.

Also, we can use WCPG to determine the impact on the output of the computational errors. Classical
error analysis cannot be used in that context due to the feedback scheme of the computation (Interval
Arithmetic or Affine Arithmetic do not provide tight bounds [39]).

Since the filter is linear, the implemented filter H∗ can be seen as the exact filter H where the output is
corrupted by the vector of errors ε(k) occurring at each sum of product through a given linear filter He (see
Fig. 7).

H∗
u(k)

ε(k)

y∗(k) ⇐⇒
H

Hε

u(k)

e(k)
+

y(k)

∆y(k)

y∗(k)

Figure 7: The implemented filter is equivalent to the exact filter where the output is corrupted by the
computational errors passing themselves through a filter.

A State-space representation of He can be obtained analytically [16] and Proposition 1 can be used to
determine the output error ∆y due to finite-precision arithmetic, i.e. due to the roundoff errors ε(k).

For all these reasons, the reliable computation of the Worst-Case Peak Gain matrix is a required step for
the accurate error analysis of LTI systems in finite precision.
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4.2 Contribution: Reliable evaluation of the Worst-Case Peak Gain measure

4.2.1 Algorithm for WCPG evaluation

Given a BIBO stable LTI filter in state-space realization (??) and ε, a desired absolute approximation error,
we want to determine the Worst-Case Peak Gain matrix W of this filter, defined in (13). While computing
such an approximation, various errors, such as truncation and summation errors, are made.

Instead of directly computing the infinite sum
∣∣CAkB

∣∣ for any k ≥ 0, we will use an approximate
eigenvalue decomposition of A (i.e. A ≈ V TV −1) and compute the FP sum

∣∣CV T kV −1B
∣∣ for 0 ≤ k ≤ N .

Our approach to compute the approximation SN of W is summarized in algorithm 1 where all the
operations (⊗, ⊕, inv, abs, etc.) are FP multiple precision operations done at various precisions to be
determined such that the overall error is less than ε:

|W − SN | ≤ ε. (14)

The overall error analysis decomposes into 6 steps, where each one expresses the impact of a particular
approximation (or truncation), and provides the accuracy requirements for the associated operations such
that the result is rigorously bounded by ε.

Algorithm 1: Floating-point evaluation of the WCPG.
Input: A ∈ Fn×n,B ∈ Fn×q,C ∈ Fp×n,D ∈ Fp×q, ε > 0
Output: SN ∈ Fp×q

Step 1: Compute N
Step 2: Compute V from an eigendecomposition of A

T ← inv(V )⊗A⊗ V
if ‖T ‖2 > 1 then return ⊥

Step 3: B′ ← inv(V )⊗B
C ′ ← C ⊗ V
S−1 ← |D|, P−1 ← In
for k from 0 to N do

Step 4: P k ← T ⊗ P k−1

Step 5: Lk ← C ′ ⊗ P k ⊗B′
Step 6: Sk ← Sk−1 ⊕ abs(Lk)

return SN

Step 1: Let WN be the truncated sum

WN :=
N∑

k=0

∣∣∣CAkB
∣∣∣+ |D| . (15)

We compute a truncation order N of the infinite sum W such that the truncation error is less than ε1 > 0:

|W −WN | ≤ ε1. (16)

The idea of the algorithm is described further in this section.

Step 2: Error analysis for computing the powers Ak of a full matrix A, when the k reaches several
hundreds, is a significant problem, especially when the norm of A is larger than 1 and its eigenvalues are
close to 1. However, if A may be represented as A = XEX−1 with E ∈ Zn×n strictly diagonal and
X ∈ Zn×n, then powering of A reduces to powering the diagonal matrix E, which is more convenient.

Suppose we have a matrix V approximating X. We require this approximation to be just quite accurate
so that we are able to discern the different associated eigenvalues and be sure their absolute values are less
than 1.

12



We may then consider the matrix V to be exact and compute an approximation T to V −1AV with
sufficient accuracy such that the error of computing V T kV −1 instead of matrix Ak is less than ε2 > 0:

∣∣∣∣∣WN −
N∑

k=0

∣∣∣CV T kV −1B
∣∣∣
∣∣∣∣∣ ≤ ε2. (17)

We require for matrix T to satisfy ‖T ‖2 ≤ 1. This condition is stronger than ρ(A) < 1, it naturally means
that there exist some margin for computational errors between the spectral radius and 1. We provide an
algorithm to test it using an analogue of Gershgorin’s circle theorem [40] for the eigenvalues.

Step 3: We compute approximations B′ and C ′ of V −1B and CV , respectively. We require that the
propagated error committed in using B′ instead of V −1B and C ′ instead of CV be less than ε3 > 0:

∣∣∣∣∣
N∑

k=0

∣∣∣CV T kV −1B
∣∣∣−

N∑

k=0

∣∣∣C′T kB′
∣∣∣
∣∣∣∣∣ ≤ ε3. (18)

Step 4: We compute in P k the powers T k of T with a certain accuracy. It is required that the error be
less than ε4 > 0: ∣∣∣∣∣

N∑

k=0

∣∣∣C′T kB′
∣∣∣−

N∑

k=0

∣∣C′P kB
′∣∣
∣∣∣∣∣ ≤ ε4. (19)

Step 5: We compute in Lk each summand C′P kB
′ with a error small enough such that the overall

approximation error induced by this step is less than ε5 > 0:
∣∣∣∣∣
N∑

k=0

∣∣C′P kB
′∣∣−

N∑

k=0

|Lk|
∣∣∣∣∣ ≤ ε5. (20)

Step 6: Finally, we sum Lk in SN with enough precision so that the absolute error bound for summation
is bounded by ε6 > 0: ∣∣∣∣∣

N∑

k=0

|Lk| − SN
∣∣∣∣∣ ≤ ε6. (21)

By ensuring that each step verifies its bound εi, and taking εi = 1
6ε, we get ε1 +ε2 +ε3 +ε4 +ε5 +ε6 ≤ ε,

hence (14) will be satisfied if inequalities (16) to (21) are.
Our approach hence determines first a truncation order N and then performs summation up to that

truncation error, whilst adjusting precision in the different summation steps. A competing approach would
be not to start with truncation order determination but to immediately go for summation and to stop when
adding more terms does not improve accuracy. However, such an approach would not allow the final error
to be bounded in an a priori way. Moreover, the multiple precision FP summation needs to know a bound
on the number of terms to be summed, beforehand.

Truncation order In [19] Balakrishnan and Boyd propose "simple" lower and upper bounds on N . How-
ever, they describe their algorithm in terms of exact arithmetic, i.e. do not propose any error analysis. Their
iterative approach has several difficulties which make it unusable in finite-precision algorithms.

We have deduced a direct formula for the truncation order N such that the bound (16) is satisfied.
Our algorithm ensures that we do not underestimate the truncation bound. However, it includes solving an
instance of an eigendecomposition problem and solving a linear system of equations as well.

There exist many FP libraries, such as LAPACK4, providing functions for an eigendecomposition and to
solve linear systems of equations. They usually deliver good and fast approximations to the solution of a given

4http://www.netlib.org/lapack/
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Example 1 Example 2 Example 3 Example 4

sizes n, p and q n = 10, p = 11, q = 1 n = 12, p = 1, q = 25 n = 60, p = 28, q = 14 n = 3, p = 1, q = 4

1− ρ(A) 1.39× 10−2 8.65× 10−3 1.46× 10−2 2−60

max(SN ) 3.88× 101 5.50× 109 2.64× 102 -
min(SN ) 1.29× 100 1.0× 100 1.82× 101 -

ε 2−5 2−53 2−600 2−5 2−53 2−600 2−5 2−53 2−600 2−5

N 220 2153 29182 308 4141 47811 510 1749 27485 -
Inversion iterations 0 2 4 2 3 5 1 2 4 -

overall max precision (bits) 212 293 1401 254 355 1459 232 306 1416 -
Overall execution time (sec) 0.11 1.53 60.06 0.85 11.54 473.20 45.62 177.90 9376.86 0.00...

Table 2: Numerical results for 3 real-world and 1 constructed example

numerical problem but there is neither verification nor guarantee about the accuracy of that approximation.
An approach to obtain trusted error bounds is to use Interval Arithmetic [41]. In Interval Arithmetic real
numbers are represented as sets of reals with addition, subtraction, multiplication and division defined [41].
The Theory of Verified Inclusions [42], [43] ,[44], [45] is a set of algorithms computing guaranteed bounds on
solutions of various numerical problems, developed by S. Rump [42]. The verification process is performed by
means of checking an interval fixed point, i.e. it is verified that the result interval contains an exact solution
of given numerical problem.

For these reasons we propose to combine LAPACK FP arithmetic with Interval Arithmetic enhanced with
the Theory of Verified Inclusions in order to obtain trusted intervals on the eigensystem and, eventually, a
rigorous bound on N without significant impact on algorithm performance, since this computation is done
only once. In addition, if the spectral radius of A cannot be shown less than 1, we stop the algorithm.

4.2.2 Numerical examples

The algorithms discussed above were implemented in C, using GNU MPFR version 3.1.12, GNU MPFI5

version 1.5.1 and CLAPACK6 version 3.2.1. Our implementation was tested on several real-life and random
examples:

• The first example comes from Control Theory: the LTI system is extracted from an active controller of
vehicle longitudinal oscillation [46], and WCPG matrix is used to determine the fixed-point arithmetic scaling
of state and output.

• The second is a 12th-order Butterworth filter, described in ρ-Direct Form II transposed [24] (a particular
algorithm, with low complexity and high robustness to quantization and computational errors), where the
errors-to-output LTI system He is considered (see Figure 7).

• The third one is a large random BIBO stable filter (obtained from the drss command of Matlab), with
60 states, 14 inputs and 28 outputs.

• The last one is built with a companion matrix A with spectral radius equal to 1− 2−60.

Experiments were done on a laptop computer with an Intel Core i5 processor running at 2.8 GHz and 16 GB
of RAM.

The numerical results detailed in Table 2 show that our algorithm for Worst-Case Peak Gain matrix
evaluation with a priori error bound exhibits reasonable performance on typical examples. Even when the a
priori error bound is pushed to compute WCPG results with an accuracy way beyond double precision, the
algorithm succeeds in computing a result, even though execution time grows pretty high.

Our algorithm includes checks testing that certain properties of matrices are verified, in particular that
ρ(A) < 1 and ‖T ‖2 ≤ 1. Our Example 4, not taken from a real-word application but constructed on purpose,
shows that the algorithm correctly detects that the conditions are not fulfilled for that example.

5https://gforge.inria.fr/projects/mpfi/
6http://www.netlib.org/clapack/
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4.3 Contribution: rigorous approach on determining Fixed-Point Formats for a digital
filter implementation

Once a reliable implementation of the WCPG evaluation is obtained, we can apply it to bound all the
variables of the filter and use it to determine the impact of rounding errors on the output of implemented
filter.

4.3.1 Problem statement

The problem of determining the FxPF for a filter H implementation can be formulated as follows. Let H be
a filter in a state-space representation (??). Suppose all the inputs to be in an interval bounded by ū.

Given the wordlength constraints vector wx for the state and wy for the output variables we look for a
FxPF for x(k) and y(k) such that for any possible input no overflow occurs. We wish to determine the least
MSB vectors my and mx such that

∀k, y(k) ∈ [−2−my ; 2my − 2my−wy+1], (22)

∀k, x(k) ∈ [−2−mx ; 2mx − 2mx−wx+1]. (23)

Remark 1. Since the filter H is linear and input interval is centered at zero, the output interval is also
centered in zero. Therefore, further we will seek to determine the least my and mx such that

∀k, |y(k)| ≤ 2my − 2my−wy+1, (24)

∀k, |x(k)| ≤ 2mx − 2mx−wx+1. (25)

4.3.2 Applying the WCPG to compute MSB positions

Applying the WCPG theorem on the filter H yields a bound on the output interval:

|yi(k)| ≤ (〈〈H〉〉 ū)i , i = 1, . . . , p. (26)

Denote the bound vector ȳ := 〈〈H〉〉 ū.
We can determine the FxPF for the output of a LTI filter H utilizing the following lemma.

Lemma 1. Let H = (A,B,C,D) be a BIBO-stable MIMO LTI filter and ū be a bound on the input interval.
Suppose the wordlengths wy are known and wyi > 1, i = 1, . . . , p.

If for i = 1, . . . , p the MSBs are computed with

myi =
⌈

log2(ȳi)− log2

(
1− 21−wyi

)⌉
(27)

and the LSBs are computed with `yi = myi + 1 −wyi , then for all k |yi(k)| ≤ 2myi − 2myi−wyi+1 and myi

is the least.

Using Lemma 1 we can determine the FxPF for the output of a filter. In order to determine the FxPF
for the state variable we modify the filter H by vertically concatenating the state vector and the output and
include necessary changes into the state matrices.

Denote vector ζ(k) :=

(
x(k)
y(k)

)
to be the new output vector. Then the state-space relationship (??)

takes the form:

Hζ




x(k + 1) = Ax(k) + Bu(k)

ζ(k) =

(
I
C

)
x(k) +

(
0
D

)
u(k)

. (28)

Hence the problem is to find the least MSB vector mζ such that (element-by-element)

∀k, |ζ(k)| ≤ 2mζ − 2mζ−wζ+1. (29)

Now, applying the WCPG theorem on the filter Hζ and using Lemma 1, we can deduce the MSB positions
of the state and output vectors for an implementation of the filter H.
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4.3.3 Taking rounding errors into account

However, due to the finite-precision degradation what we actually compute is not the exact filter Hζ but an
implemented filter H♦ζ :

H♦ζ




x♦(k + 1) = ♦`x

(
Ax♦(k) +Bu(k)

)

ζ♦(k) = ♦`ζ

((
I
C

)
x♦(k) +

(
0
D

)
u(k)

)
(30)

where the Sums-of-Products (accumulation of scalar products on the right side) are computed with some
rounding operator ♦`. Suppose, this operator ensures faithful rounding [47]:

|♦`(x)− x| < 2` (31)

In [?, ?] it was shown that such an operator can be implemented using some extra guard bits for the
accumulation.

Denote the errors due to operator ♦` as εx(k) and εy(k) for the state and output vectors, respectively.
Essentially, the vectors εx(k) and εy(k) may be associated with the noise which is induced by the filter
implementation. Then the implemented filter can be rewritten as

H♦ζ




x♦(k + 1) = Ax♦(k) +Bu(k) + εx(k)

ζ♦(k) =

(
I
C

)
x♦(k) +

(
0
D

)
u(k) +

(
0
I

)
εy(k)

, (32)

where

|εx(k)| < 2`x , |εy(k)| < 2`y .

It should be remarked that since the operator ♦l is applied εx(k) 6= x(k)−x♦(k) and εy(k) 6= y(k)−y♦(k).
As the rounding also affects the filter state, the x♦(k) drifts away from x(k) over time, whereas with εx(k)
we consider the error due to one step only.

It can be observed that at each instance of time the state and output vectors are computed out of u(k)
and error-vectors, which can be considered as inputs as well. Thanks to the linearity of the filters, we can
decompose the actually implemented filter into a sum of the exact filter and an "error-filter" H∆ as shown
in Fig. 8. Note that this "error-filter" is an artificial one; it is not required to be "implemented" by itself
and serves exclusively for error-analysis purposes.

H⇣

H�

⇣⌃(k)

u(k) ⇣(k)

�⇣(k)

✓
"x(k)
"y(k)

◆

m⇣

Figure 8: Implemented filter decomposition.

The filter H∆ is obtained by computing the difference between H♦ζ and Hζ . This filter takes the rounding

errors ε(k) :=

(
εx(k)
εy(k)

)
as input and returns the result of their propagation through the filter:

H∆





∆x(k + 1) = A∆x(k) +

(
I
0

)
ε(k)

∆ζ(k) =

(
I
C

)
∆x(k) +

(
0 0
0 I

)
ε(k)

, (33)
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where, the vector ε(k) is guaranteed to be in the interval bounded by ε̄ := 2`ζ .
Once the decomposition is done, we can apply the WCPG theorem on the "error-filter" H∆ and deduce

the output interval of the computational errors propagated through filter:

∀k, |∆ζ(k)| ≤ 〈〈H∆〉〉 · ε̄. (34)

Hence, the output of the implemented filter is bounded with
∣∣∣ζ♦(k)

∣∣∣ ≤ |ζ(k)|+ |∆ζ(k)| . (35)

Applying Lemma 1 on the implemented filter and using (35) we obtain that the MSB vector m♦ζ can be
upper bounded by

m♦ζi =
⌈
log2

(
(〈〈Hζ〉〉 · ū)i + (〈〈H∆〉〉 · ε̄)i

)
(36)

− log2

(
1− 21−wζi

)⌉
.

Therefore, the FxPF (m♦ζ , `
♦
ζ ) guarantee that no overflows occur for the implemented filter.

Since the input of the error filter H∆ depends on the FxPF chosen for implementation, we cannot directly
use (36). The idea is to first compute the FxPF of the variables in the exact filter H, where computational
errors are not taken into account, and use it as an initial guess for implemented filter H♦ζ . Hence, we obtain
the following two-step algorithm:

Step 1: Determine the FxPF (mζ , `ζ) for the exact filter Hζ
Step 2: Construct the "error-filter" H∆, which gives the propagation of the computational errors induced by

format (mζ , `ζ); then, compute the FxPF (m♦ζ , `
♦
ζ ) of the actually implemented filter H♦ζ using (36).

The above algorithm takes into account the filter implementation errors. However, the algorithm itself is
implemented in finite-precision and can suffer from rounding errors, which influence the output result. All
operations in the MSB computation will induce errors, so what we actually compute are only floating-point
approximations m̂ζ and m̂ζ

♦.
We proposed error-analysis of the floating-point evaluation of the MSB positions via Lemma (1).
Both (27) and (36) contain the WCPG evaluations. Using the result obtained in [20], we can compute

them with arbitrary precision. By controlling the accuracy of the WCPG matrices we proved that we can
achieve for the approximations on the MSB positions to be off by at most one (to be either an exact MSB
or to overestimate by one bit). The proofs are not presented in the current report but can be found in [21].

4.3.4 Complete algorithm

The two-step algorithm, presented in above takes into account accumulation of computational errors in a
filter over time and we provided an error-analysis of the MSB position computation procedure. However, one
additional fact has not been taken into account.

In most cases the MSB vectors m̂ζ (computed on Step 1) and m̂♦ζ (computed on Step 2) are the same.
However, in some cases they are not, which can happen due to one of the following reasons:

• the accumulated rounding error due to the FxPF (m̂ζ , ̂̀ζ) makes output of the actually implemented
filter pass over to the next binade; or

• the floating-point approximation m̂♦ζ is off by one.

Moreover, if the MSB position after Step 2 of the algorithm is increased, the LSB position moves along
and increases the error. Therefore, the modified format must be re-checked. Hence, the FxPF determination
algorithm gets transformed into the following three-step procedure:
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Figure 9: The exact and quantized outputs of the example. Quantized output does not pass over to the next
binade.

Step 1: Determine the FxPF (m̂ζ , ̂̀ζ) for the exact filter Hζ ;

Step 2: Construct the "error-filter" H∆, which shows the propagation of the computational errors induced
by format (m̂ζ , ̂̀ζ); then, compute the FxPF (m̂♦ζ ,

̂̀♦
ζ ) of the actually implemented filter H♦ζ ;

Step 3: If m̂♦ζi == m̂ζi , then return (m̂♦ζ ,
̂̀♦
ζ );

otherwise m̂ζi ←− m̂ζi + 1 and go to Step 2.

4.3.5 Numerical results

The above described algorithm was implemented as a C library, using GNU MPFR7 [48] version 3.1.12, GNU
MPFI8 version 1.5.1 and the WCPG library [18].

Consider following example: let H be a random stable filter with 3 states, 1 input and 1 output. Suppose
the inputs are in an interval absolutely bounded by ū = 5.125. In this example we set all the wordlength
constraints to 7 bits, however our library supports the multiple wordlength paradigm.

The results of the work of our algorithm can be observed in Table 3. On the Step 1 we deduce the MSB
positions for the filter H, which does not take computational errors into account. These MSBs serve as an
initial guess for the Step 2. We compute the vector ε̄ζ and construct the "error-filter" H∆. Taking into
account the error propagation yields changes in the MSB positions: the rounding errors force the third state
x3(k) to pass over to the next binade. However, moving the MSB yields larger quantization step and an
addition step is required. Step 3 verifies that the FxPF deduced on the Step 2 guarantees no overflow.

We can verify the result by tracing the state and output vectors in two cases: the exact vectors y(k) and
x(k); and the quantized vectors y♦(k) and x♦(k). The quantized vectors are the result of an implementation
of the filter H with FxPF deduced on the Step 1. For each state and output we take an input sequence which
makes the state respectively output attain the theoretical bound. However, this sequence is not guaranteed
to maximize the quantized error.

In Fig. 9 we can observe that the exact vector y(k) attains the bound computed with the WCPG theorem.
The quantized output stays within the bound ȳ♦ for the implemented filter but passes over the bound of the
exact filter. However, as the bound ȳ is far from the next binade, the MSB position is not changed and the
computational errors do not result in overflow.

For the third state x3(k), its bound x̄3 is very close to the 2mx3 − 2`x3 and taking into account the
filter computational errors yields passing to the next binade. It can be clearly observed in Fig. 10 that the

7http://www.mpfr.org/
8https://gforge.inria.fr/projects/mpfi/
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Figure 10: The exact and quantized third state of the example. Quantized output passes over to the next
binade.

quantized state passes over the value 2mx3 − 2`x3 . If the computational errors were not taken into account,
the initial format (deduced on the Step 1) would result in overflow.

Therefore, we observed that deducing the FxPF without taking into account the computational errors
can result in overflow but our approach guarantees a reliable implementation without overestimation.

states output
x1(k) x2(k) x3(k) y(k)

Step 1 6 7 5 6
Step 2 6 7 6 6
Step 3 6 7 6 6

Table 3: Evolution of the MSB positions vector through algorithm iterations

5 Perspectives

There are a lot of open questions concerning filter generator. The problem to be addressed in the first place
is the off-by-one problem for the MSB computation. The potential overestimation by one bit comes from
the implemented filter decomposition as seen on the Fig. 8. When we represent the implemented output as
a sum of the exact output and the output of the error-filter, we make a pessimistic assumption. In order to
compute the output interval of the implemented filter, the WCPG theorem is applied separately on the exact
and error filters. An interpretation of this approach is that the input sequence resulting in the largest peak
value of the output of the exact filter generates the largest errors as well. However, this is not generally true.
he connection between the input interval and rounding errors is known, but its non-linear dependence is still
to be investigated.

However, the off-by-one problem can still be dealt with. It can be interpreted as an instance of the
Table Maker’s Dilemma [47]: the interval approximation on the MSB position contains a power of 2 and we
do not know on which side of it the exact value lies. The first approach would be iteratively reducing the
interval approximation and performing an adaptation of Ziv’s test [47]. However, such an approach does
not guarantee an answer in reasonable timings and may require large resources. Another approach can be
re-formulating the problem into an integer linear programming problem and combining it with LLL lattice
base reduction algorithm [49]. I am very interested in applying the lattice-based approach for the fixed-point
error analysis.
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One more interesting approach would be investigating the reachability and controllability problem for the
discrete-time control systems. Testing if a particular system state is reachable from the initial zero condition
can probably be done with the LLL base reduction approach or using a satisfiability modulo theories (SMT)
solver [50].

A measure, which can potentially help in understanding the behavior of rounding errors through filter
is the probability distribution function (PDF) of the output of the filter. It can be shown that there is
a strong connection between the PDF and the WCPG. The distribution of the output of an implemented
system, when the computational errors are taken into account, can help to refine the output interval of the
implemented filter and therefore solve the off-by-one problem. The PDF can also be exploited in the signal
processing applications that accept a probability of overflow, for example in telecommunications, where a
small interference of a signal is tolerated.

Apart from the questions of the rounding errors through filter propagation, there is another interesting
problem, which concerns all generator flow. As it was mentioned before, all the steps of the filter implemen-
tation can be plugged in various optimization routines. In my opinion, it is important to provide a thorough
description of the objective functions and also to investigate the of existence of the solutions.

I find challenging and interesting the problem of coefficient quantization during the design of the transfer
function out of filter specifications. This problem is similar to rational polynomial approximation, which is
not trivial. In the case of finite impulse response filters, a robust design approach using the Parks-McCellan
algorithm has been obtained by S. Filip [51]. The same author is currently developing a similar approach for
generation of the transfer function of infinite impulse response systems. This approach should be extended
to the SIF formalism and, therefore, to be applied to any filter structure and not only to direct forms (those
forms use the transfer function’s coefficients as coefficients).

Currently in our generator the filter is assumed to be designed outside the scope and the filter coefficients
are assumed to be exact. Adding one more preliminary stage of the transfer function generation with control
of the coefficients accuracy permits to get a real picture on the filter implementation error. This stage can be
plugged in the optimization routines in order to provide just enough accuracy of the transfer function for the
final filter error-bound to be met. However, taking into account filter coefficient quantization leads to various
changes in the existing algorithms within the generator. This concerns both analysis of the error through
filter propagation and the WCPG measure analysis, which were developed during this thesis. The filter error
analysis scheme (see Fig. (8)) must be complemented with a special filter, which describes the coefficient
quantization error. In case of filter coefficients represented as intervals with small radii, the WCPG measure
can not obviously be computed with arbitrary precision. However, a trusted interval for the output WCPG
can be obtained, which is an on-going work. Another important filter characteristic of the filters is their
`2-norm. Its computation involves solving an instance of Lyapunov equations [52]. Passing to the case of
interval matrices requires solving the Lyapunov equations in multiple-precision interval arithmetic, which is
not a trivial task.

Finally, I would like to get a better understanding of the implementation of elementary functions. This
would teach me new numerical analysis techniques and permit to draw the parallels between the libm and filter
generation. When implementing a mathematical function, we often use its polynomial approximation. At the
same time, a filter is characterized by its transfer function, which is a ratio of polynomials. Implementing a
transfer function has some similarities with implementation of rational functions . Moreover, there exist some
filter structures, which can be interpreted as the common polynomial evaluation schemes, such as Horner’s
method. Drawing a parallel between filter and function implementation might offer some new insight on
the analysis of both processes as well as provide novel combined approaches to both signal processing and
computer arithmetic domains.
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