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Problem statement
°

Digital filters

u(k) y (k)

H —

Linear Time-Invariant filter in state-space representation:

H x(k+1) = Ax(k)+ Bu(k)
y(k) = Cx(k) + Du(k)

where A € R™" B € R"™¥9, C € RPX" D € RPX9
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Digital filters

u(k) y (k)

H [ ——

Linear Time-Invariant filter in state-space representation:

H x(k+1) = Ax(k)+ Bu(k)
y(k) = Cx(k) + Du(k)

where A € R™" B € R"™49, C € RP*", D € RP*9
Bounded-Input Bounded-Output (BIBO) stability:
p(A) <1
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Problem statement
.

Worst-Case Peak Gain: Definitions

Definition

Worst-case peak gain (WCPG) W is the largest possible peak
value of the output y(k) over all possible inputs u(k):

W= |D|+§:‘CA"B‘
k=0

Input

Output
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Problem statement
°

Worst-Case Peak Gain: Motivation

WCPG is required:

@ To measure how the computational errors in the implemented
filter are propagated to the output

@ To measure the magnitude of each variable for
implementations in fixed-point arithmetic
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Problem statement
°

Worst-Case Peak Gain: Motivation

WCPG is required:

@ To measure how the computational errors in the implemented
filter are propagated to the output

@ To measure the magnitude of each variable for
implementations in fixed-point arithmetic

Given a small € > 0 compute a floating-point approximation S on
the WCPG such that element-by-element

W -S| <e
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Algorithm of WCPG evaluation

Outline

© Problem statement

© Algorithm of WCPG evaluation
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@ Numerical Examples
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Algorithm of WCPG evaluation
.

Worst-Case Peak Gain

W = D]+ |cA*B|
k=0
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Algorithm of WCPG evaluation
.

Worst-Case Peak Gain
W=D+ ]cMB(
k=0

@ Cannot sum infinitely = need to truncate the sum

6/24



Algorithm of WCPG evaluation
.

Worst-Case Peak Gain
W=D+ ]cMB(
k=0

@ Cannot sum infinitely = need to truncate the sum

@ 6 sources of errors = allocate 6 "buckets” ¢; out of the
error budget ¢

6/24



Algorithm of WCPG evaluation
°

> [cas|
k=0

7/24



Algorithm of WCPG evaluation

1% N
> |cAkB] — Y |cA“B|
k=0 k=0
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Algorithm of WCPG evaluation

1% N
d |cAkB] - Y |cA*B|| <&
k=0

k=0

Step 1 Compute an approximate lower bound on truncation
order N such that the truncation error is smaller than
£1.

- k
3 |caks|
k=0

N
3 [caks|
k=0
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Algorithm of WCPG evaluation
°

1% N
d |cAkB] - Y |cA*B|| <&
k=0 k=0

Step 1 Compute an approximate lower bound on truncation
order N such that the truncation error is smaller than
£1.

Lower bound on truncation order N

- k
3 [caks|
k=0

N
3 [caks|
k=0
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Algorithm of WCPG evaluation
°

> |caks|
N k=0 .
§:|CAkB| %|CMB
k=0 k=0 0
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Algorithm of WCPG evaluation
°

> |caks|
N k=0
CA*B W,
Z | | > |CA"B|
k=0 k=0
1
X = cancellation

less cancellation
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Algorithm of WCPG evaluation
°

N

> jca's]

k=0

cancellation

less cancellation

Va~Xand T E
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Algorithm of WCPG evaluation
°

N
> jca's]
k=0

X = cancellation

X = less cancellation
A= XEX1 Va~Xand T E

~

T~V 1xAxV

!

A~V x Tkx v
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Algorithm of WCPG evaluation

> |caks|
N k=0 .
§:|CAkB| %|CMB
k=0 k=0 .
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Algorithm of WCPG evaluation
°

N \ §O|CA‘<B|

-~ 4
kZO|CAkB| — ;O|cvrkv 'B £ feats
- - 4
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Algorithm of WCPG evaluation
°

N N
Y |cakB| - Y |cvTiv IB|| <
k=0 k=0

Step 2 Given matrix V compute T such that the error of
substitution of the product V TV 1 instead of A is
less than &;.
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Algorithm of WCPG evaluation

N
Y lcvTivB
k=0
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Algorithm of WCPG evaluation
°

N N
d levTiviBl — > |C'TFB|
k=0 k=0
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Algorithm of WCPG evaluation
°

N N
dlevTiviBl - Y |C'TFB|| < e
k=0 k=0

Step 3 Compute the products CV and V!B such that the
propagated error of matrix multiplications is bounded
by 3.
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Algorithm of WCPG evaluation

N
Z‘C/TkBl| 3 |CA‘<B|
k=0 k=0
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Algorithm of WCPG evaluation
°

> |caks|
k=0
!
3 |caks|
k=0
!
S ‘cvrkv*ls‘
k=0
!
év: |C'TkB”
k=0

N N
Y |cTB | — > |C'PyB|

k=0 k=0

PO =1
P, =T®Py_

N
> |C'PB|
k=0
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Algorithm of WCPG evaluation

N N
M |TB| — Y ICPB|| <&
k=0

k=0

PO =1
P, :=T®Py_

Step 4 Compute the powers Py of matrix T such that the
propagated error of matrix multiplications is bounded
by Eq.
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Algorithm of WCPG evaluation
°

> |caks|
N k=0 .
Z|C/PkBl| %|CA"B|
k=0 k=0 .
S ‘cvrkv*ls‘
k=0
4+
év: |C'TkB/’
k=0

N
> |c'PB|
k=0

L
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Algorithm of WCPG evaluation
°

> |caks|
N N k=0 .
Z|C/PkBl| - Z | Li| 3 |caks|
k=0 k=0 k=0 .
S ‘cvrkv*ls‘
k=0 i
L, = C/®(Pk®Bl) %|C'T"B”
k=0
N
> |c’'PB’
k=0
4+

N

> 1Lkl

k=0
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Algorithm of WCPG evaluation
°

N N
Z|C/PkBl| — Z|Lk| §E5
k=0 k=0

L, = c’ ® (Pk ® Bl)

Step 5 Compute on each step the matrix product C' T*B’
such the overall error of these multiplications on each
step is bounded by 5.

> |caks|
k=0
!
> |caks|
k=0
!
3 ‘cvrkv*ls‘
k=0
!
év: |C'TkB/’
k=0

N
> |c'PB|
k=0

{
N
> Lkl
k=0
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Algorithm of WCPG evaluation
®0

> |caks|
N k=0 .
Z | Li| 3 |caks|
k=0 k=0
!
N
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N
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N
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Algorithm of WCPG evaluation
®0

N
S Il — Sw

k=0

Sk :=Sk_1D L]

> |caks|
k=0
!
3 |caks|
k=0
!
S ‘cvrkv*ls‘
k=0
4+
év: |C'TkB/’
k=0

N
> |C'PB|
k=0
L
N
> Ll
k=0

+
Sy
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Algorithm of WCPG evaluation
®0

Sk :=Sk_1D L]

Step 6 Compute the absolute value of matrix and accumulate
it in the result such that the error is bounded by &g.

> |caks|
k=0
!
3 |caks|
k=0
!
5 ‘cvrkv*ls‘
k=0
!
év: |C'TkB/’
k=0

N
> |C'PB|
k=0
L
N
> 1Ll
k=0

+
Sy
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Algorithm of WCPG evaluation
oe

1 :
Taking ¢; = 65 we obtain that €1 +e2 + ... + g6 < € hence the ’
overall error bound is satisfied.

A floating-point evaluation of the WCPG:
Step 1: Compute N
Step 2: Compute V
T —inv(V)® (A® V)
Step 3: B’ + inv(V)® B
C+~CoV
571 < |D|, P,1 — I,,
for k from 0 to N do:
Step 4: P, T®Py_4
Step5: Liy+ C'® (Pk ® B’)
Step 6: Sk + Sk_1 D abs(Lg)
end for
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Basic bricks

Outline
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© Algorithm of WCPG evaluation
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© Conclusion
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Basic bricks
.

Basic bricks

Requirement:

Provide matrix operations which satisfy an element-by-element
absolute error bound ¢ given in the argument.
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Basic bricks
.

Basic bricks

Provide matrix operations which satisfy an element-by-element
absolute error bound ¢ given in the argument.

Problem:
In fixed-precision FP arithmetic such absolute bound is not
generally possible.

| A\
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Basic bricks
.

Basic bricks

Provide matrix operations which satisfy an element-by-element
absolute error bound ¢ given in the argument.

Problem:

| A

In fixed-precision FP arithmetic such absolute bound is not
generally possible.

Use multiple-precision FP arithmetic and dynamically adapt
precision of the result variables.
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Basic bricks
°

Basic bricks

e multiplyAndAdd(A, B, C,¢): for A€ CP*", B € C"*9,
C € CP*9 computes a matrix D € CP*9 such that

D=A-B+C+A,
where the error-matrix A is bounded by |A| < 4, for a certain
scalar absolute error bound §, given in argument to the
algorithm.

The algorithm performs an error-free scalar multiplication and uses
a modified software-implemented Kulisch-like accumulator.
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Basic bricks
°

Basic bricks

@ sumAbs(A, B,d): for A€ RP*" B € CP*", computes a
matrix C € RP*" such that

C=A+|B|+A,

where the error matrix A is bounded by |A| < 4, for a certain
scalar absolute error bound §, given in argument to the
algorithm.
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Basic bricks
°

Basic bricks

e inv(V,d): for a complex square matrix V € C"*", computes a
matrix U € C™" such that

Uu=v'+a,

where the error matrix A is bounded by |A| < 4, for a certain
scalar absolute error bound §, given in argument to the
algorithm.

The algorithm is based on Newton-Raphson matrix iteration,
requires a seed matrix in argument and works on certain
conditions, easily verified in our case.
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Basic bricks
°

Basic bricks

e frobeniusNormUpperBound(A, §): for A € CP*" computes f
an upper bound on the Frobenius norm of A such that

F= Al +9

where 0 < v < 4, for a certain scalar absolute error bound 4,
given in argument to the algorithm.
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Numerical Examples
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Examples

Numerical Examples
°

Example 1: comes from Control Theory, describes a controller of
vehicle longitudinal oscillation

Example 2: 12th-order Butterworth filter

Example 1 Example 2
sizes n, pandq n=10, p=11, qg=1 n=12, p=1 ¢q=25

p(A) 1.39 x 1072 8.65 x 1073

max(SN) 3.88 x 10! 5.50 x 10°

min(Sy) 1.29 x 10° 1.0 x 10°
€ 2-5 2-53 2—600 2-5 2-53 2—600
N 220 2153 29182 308 4141 47811
Inversion iterations 0 2 4 2 3 5
overall max precision (bits) 212 293 1401 254 355 1459
V1 max precision (bits) 106 173 727 148 204 756
Py max precision (bits) 64 84 639 64 86 640
Sn max precision (bits) 64 79 630 64 107 658
Overall execution time (sec) 0.11 1.53 60.06 0.85 11.54 473.20
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Conclusion
®0

Conclusion and Perspectives

Conclusion
@ Rigorous evaluation of the WCPG matrix
@ Direct formula for truncation order determination

@ Implementation of a library in C

Perspectives
@ Use a multiprecision eigensolver
@ Formalize proofs in a Formal Proof Checker

@ Other measures for filter analysis
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Thank you!
Questions?
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Appendix. Ly-norm evaluation

L>-norm evaluation

Another related problem is the reliable evaluation of the Ly-norm.
If H is a transfer function, then its Ly-norm is defined by

1 2w ) )
Ml 2 \/ e ML COI

Parseval's theorem gives another expression when H is described
with state-space matrices A, B, C, D:

IHl, = \/tr(Cw.CT+DDT)

~ \/tr(BTW,B + DT D)

where W and W, are the controllability and observability
Gramians of the system.
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Appendix. Ly-norm evaluation

Gramians

@ W is the controllability Gramian of the system.

o0
W, 2 (A*B)(A*B)T
k=0
W . is the solution of the discrete-time Lyapunov equation
wW.=AW_.A" + BB'
@ W, is the observability Gramian of the system.
o0
W, £ (CAHT(CcAY)
k=0
W, is the solution of the discrete-time Lyapunov equation
wW,=A"W,A+C'C

2/12



Appendix. Ly-norm evaluation

Computation of the Gramians

The Gramians are usually computed by solving the discrete-time
Lyapunov equation X = AXA" + Q
The following methods can be used:
o solve (I —A® A)x =q
where x = Vec(X) and g = Vec(Q)
— numerically inefficient

[o.¢]
@ use infinite sum Z:AkQAkT
k=0
— may required a lot of computation
@ use Hammarling’s method, based on Schur decomposition of
matrix A
— efficient, but required a deep analysis of the computational
errors of the algorithm

see “Computational methods for linear matrix equations’, V. Simoncini
3/12



Appendix. Ly-norm evaluation

Reliable computation of the L,-norm

@ How to have a reliable evaluation of the Ly-norm in multiple
precision

@ How to proceed when A, B, C and D are interval matrices
(small radii, containing previously computed errors)

4/12



Appendix. Step-by-Step Error Analysis.

Step 1. Bound on truncation error

Truncation error is the tail of the infinite sum:

3 ’CA"B‘

k>N
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Truncation error is the tail of the infinite sum:

3 ’CA"B‘

k>N

Suppose A = XEX ™!, where E = diag(\1,...,\,) is the
eigenvalue matrix and X is the eigenvector matrix. Then,

CA*B = CXE*X7'B=> R\
1=1
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Appendix. Step-by-Step Error Analysis.

Step 1. Bound on truncation error

Truncation error is the tail of the infinite sum:

> |caB|

k>N
Suppose A = XEX ™!, where E = diag(\1,...,\,) is the
eigenvalue matrix and X is the eigenvector ,r7natrix. Then,

CA“B = CXEXX 1B = Z R/
=1

Bound on truncation error

3 ‘CA"B’ < p(A)NM
k>N

RN
M = el
,Z; 1 — |\ p(A)
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Appendix. Step-by-Step Error Analysis.

Step 1. Bound on truncation error

Truncation error is the tail of the infinite sum:

3 ’CA" B(

k>N
Suppose A = XEX ™!, where E = diag(\1,...,\,) is the
eigenvalue matrix and X is the eigenvector matrix. Then,

CA*B = CXE*X7'B=> R/\f
1=1

Bound on truncation error

!
p(ANTIM < g

n

IRil |\
M = —
,Z; 1— |\ p(A)
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Appendix. Step-by-Step Error Analysis.

Step 1. Bound on truncation order

Lower bound on truncation order

2 [igal]|

n

IRi| [\

M = —_—
2 T[N (A)

where m is defined as m := min |[M; j|.
iJ
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Appendix. Step-by-Step Error Analysis.

Step 1. Bound on truncation order

Lower bound on truncation order

2 [igal]|

R A
—~1— |\ p(A)

M =

where m is defined as m := min |[M; j|.
iJ

Reliable evaluation

Interval Arithmetic and Rump’s Theory of Verified Inclusions are
used to determine a rigorous bound of N.

6/12



Appendix. Step-by-Step Error Analysis.

Step 2. "Diagonalization” of matrix A

T =v1!iav-aA,
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Appendix. Step-by-Step Error Analysis.

Step 2. "Diagonalization” of matrix A

T:=V AV - A,
@ V is some approximation on X

@ A, represents the element-by-element errors due to the two
matrix multiplications and the inversion of matrix V
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Appendix. Step-by-Step Error Analysis.

Step 2. "Diagonalization” of matrix A

T =v1!iav-aA,

@ V is some approximation on X

@ A, represents the element-by-element errors due to the two
matrix multiplications and the inversion of matrix V

@ T diagonal in dominant with very small other elements
° [Tl <1
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Appendix. Step-by-Step Error Analysis.

Step 2. "Diagonalization” of matrix A

T =v'lav-aA,
A= V(T + D)Vt

The error of substitution of A by VTV L

V(N +1)(N +2) [ Bl [V ||[VB|
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A= V(T + D)Vt

The error of substitution of A by VTV L

V(N +1)(N+2) |8z |[CV V!Bl < e
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Appendix. Step-by-Step Error Analysis.

Step 2. "Diagonalization” of matrix A

T =v'lav-aA,
A= V(T + D)Vt

The error of substitution of A by VTV L

V(N +1)(N+2) [ Dol |CV [VB], < e

A condition on the error-matrix As:

1 €2
V(N +1)(N+2)[[CV| VB

Az <
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Appendix. Step-by-Step Error Analysis.

Step 3. Computing products C’ and B’

Cl = CV+A3C
B =V7B+A;,

where Az € CP*" and A3, € C"*9 are error-matrices.

Bound on the multiplication errors Az and Az, :

” < 1 1 €3
F=3vn N+1[C,
1 1 €3
A < . .
H 3B||F = 3\/5 N+ 1 HBIHF

||A3C
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Appendix. Step-by-Step Error Analysis.

Step 4. Powering T

Py :=T"- A4

A, € C™" error-matrix on matrix powers, including error
propagation from the first to the last power.

Py=TPi_1+Ty,

where T, € C™ is the error-matrix on the error of the matrix
multiplication at step k.

Bound on the error-matrix Iy

1 1 4

1
[Fellls € == o v
FEUa N=1 N+1 CT 187
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Appendix. Step-by-Step Error Analysis.

Step 5. Computing Ly

Lk = C/PkB, + A5k,

where As, € CP*9 is the matrix of element-by-element errors for
the two matrix multiplications.

Bound on the error-matrix As,
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Appendix. Step-by-Step Error Analysis.

Step 6. Summation

N
Sn =D+ > _|Li|+ B,
1=0

where the error-matrix Ag € CP*9 represents the error of N + 1
absolute value accumulations.

Bound on the error matrix Ag,

D, < NEE
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