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Digital filters

u(k)
H

y(k)

Linear Time-Invariant filter in state-space representation:

H

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

where A ∈ Rn×n,B ∈ Rn×q,C ∈ Rp×n,D ∈ Rp×q

Bounded-Input Bounded-Output (BIBO) stability:

ρ(A) < 1
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Worst-Case Peak Gain: Definitions

Definition

Worst-case peak gain (WCPG) W is the largest possible peak
value of the output y(k) over all possible inputs u(k):

W := |D|+
∞∑

k=0

∣∣∣CAkB
∣∣∣

x[n]

y[n]

z 1 z 1 z 1

h[0] h[1] h[2] h[3]

x?L
?yM H(z)

Weird
Stu↵

H
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Worst-Case Peak Gain: Motivation

WCPG is required:

To measure how the computational errors in the implemented
filter are propagated to the output

To measure the magnitude of each variable for
implementations in fixed-point arithmetic

Goal:

Given a small ε > 0 compute a floating-point approximation S on
the WCPG such that element-by-element

|W − S | < ε
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Worst-Case Peak Gain

W = |D|+
∞∑

k=0

∣∣∣CAkB
∣∣∣

Cannot sum infinitely =⇒ need to truncate the sum

6 sources of errors =⇒ allocate 6 ”buckets” εi out of the
error budget ε
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Step 1

∣∣∣∣∣

∞∑

k=0

∣∣CAkB
∣∣

−→−
N∑

k=0

∣∣CAkB
∣∣
∣∣∣∣∣ ≤ ε1

Step 1 Compute an approximate lower bound on truncation
order N such that the truncation error is smaller than
ε1.

Lower bound on truncation order N

N ≥
⌈

log ε1

‖M‖min

log ρ(A)

⌉
with M :=

n∑

l=1

|R l |
1− |λl |

|λl |
ρ(A)

∞∑
k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CVT kV−1B
∣∣∣

↓
N∑

k=0

∣∣∣C′T kB′
∣∣∣

↓
N∑

k=0

∣∣C ′PkB′
∣∣

↓
N∑

k=0
|Lk |

↓
SN
↓
↓
↓
↓
↓
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Step 2

(
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k=0

∣∣CAkB
∣∣

−→−
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∣∣CVT kV−1B
∣∣(≤ ε2

× = cancellation

× = less cancellation

A = XEX−1 V ≈ X and T ≈ E

T ≈ V−1 × A× V

Ak ≈ V × T k × V−1
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Step 4

∣∣∣∣∣
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∣∣C ′T kB ′
∣∣
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k=0

|C ′PkB ′|
∣∣∣∣∣ ≤ ε4

P0 := I
Pk := T ⊗ Pk−1

Step 4 Compute the powers Pk of matrix T such that the
propagated error of matrix multiplications is bounded
by ε4.
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Step 5

∣∣∣∣∣
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−→−
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k=0

|Lk |
∣∣∣∣∣ ≤ ε5

Lk := C ′ ⊗ (Pk ⊗ B ′)
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Taking εi =
1

6
ε we obtain that ε1 + ε2 + . . .+ ε6 ≤ ε hence the

overall error bound is satisfied.

A floating-point evaluation of the WCPG:

Step 1: Compute N

Step 2: Compute V
T ← inv(V )⊗ (A⊗ V )

Step 3: B ′ ← inv(V )⊗ B
C ′ ← C ⊗ V
S−1 ← |D|, P−1 ← I n
for k from 0 to N do:

Step 4: Pk ← T ⊗ Pk−1

Step 5: Lk ← C ′ ⊗
(
Pk ⊗ B ′

)

Step 6: Sk ← Sk−1 ⊕ abs(Lk)

Step 6: end for
14/24
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Basic bricks

Requirement:

Provide matrix operations which satisfy an element-by-element
absolute error bound δ given in the argument.

Problem:

In fixed-precision FP arithmetic such absolute bound is not
generally possible.

Solution:

Use multiple-precision FP arithmetic and dynamically adapt
precision of the result variables.
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Basic bricks

multiplyAndAdd(A,B,C , δ): for A ∈ Cp×n, B ∈ Cn×q,
C ∈ Cp×q, computes a matrix D ∈ Cp×q such that

D = A · B + C + ∆,

where the error-matrix ∆ is bounded by |∆| < δ, for a certain
scalar absolute error bound δ, given in argument to the
algorithm.

The algorithm performs an error-free scalar multiplication and uses
a modified software-implemented Kulisch-like accumulator.
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Basic bricks

sumAbs(A,B, δ): for A ∈ Rp×n, B ∈ Cp×n, computes a
matrix C ∈ Rp×n such that

C = A + |B|+ ∆,

where the error matrix ∆ is bounded by |∆| < δ, for a certain
scalar absolute error bound δ, given in argument to the
algorithm.
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Basic bricks

inv(V , δ): for a complex square matrix V ∈ Cn×n, computes a
matrix U ∈ Cn×n such that

U = V−1 + ∆,

where the error matrix ∆ is bounded by |∆| < δ, for a certain
scalar absolute error bound δ, given in argument to the
algorithm.

The algorithm is based on Newton-Raphson matrix iteration,
requires a seed matrix in argument and works on certain
conditions, easily verified in our case.
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Basic bricks

frobeniusNormUpperBound(A, δ): for A ∈ Cp×n computes f
an upper bound on the Frobenius norm of A such that

f = ‖A‖F + γ

where 0 ≤ γ < δ, for a certain scalar absolute error bound δ,
given in argument to the algorithm.
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Examples

Example 1: comes from Control Theory, describes a controller of
vehicle longitudinal oscillation

Example 2: 12th-order Butterworth filter

Example 1 Example 2

sizes n, p and q n = 10, p = 11, q = 1 n = 12, p = 1, q = 25
1− ρ(A) 1.39× 10−2 8.65× 10−3

max(SN) 3.88× 101 5.50× 109

min(SN) 1.29× 100 1.0× 100

ε 2−5 2−53 2−600 2−5 2−53 2−600

N 220 2153 29182 308 4141 47811
Inversion iterations 0 2 4 2 3 5

overall max precision (bits) 212 293 1401 254 355 1459
V−1 max precision (bits) 106 173 727 148 204 756
PN max precision (bits) 64 84 639 64 86 640
SN max precision (bits) 64 79 630 64 107 658

Overall execution time (sec) 0.11 1.53 60.06 0.85 11.54 473.20
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Conclusion and Perspectives

Conclusion

Rigorous evaluation of the WCPG matrix

Direct formula for truncation order determination

Implementation of a library in C

Perspectives

Use a multiprecision eigensolver

Formalize proofs in a Formal Proof Checker

Other measures for filter analysis
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Thank you!
Questions?
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Appendix. L2-norm evaluation Appendix. Step-by-Step Error Analysis.

L2-norm evaluation

Another related problem is the reliable evaluation of the L2-norm.
If H is a transfer function, then its L2-norm is defined by

‖H‖2 ,

√
1

2π

∫ 2π

0
‖H(e jω)‖2

F dω

Parseval’s theorem gives another expression when H is described
with state-space matrices A,B,C ,D:

‖H‖2 =
√
tr(CW cC> + DD>)

=
√

tr(B>W oB + D>D)

where W c and W o are the controllability and observability
Gramians of the system.
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Gramians

W c is the controllability Gramian of the system.

W c ,
∞∑

k=0

(AkB)(AkB)>

W c is the solution of the discrete-time Lyapunov equation

W c = AW cA> + BB>

W o is the observability Gramian of the system.

W o ,
∞∑

k=0

(CAk)>(CAk)

W o is the solution of the discrete-time Lyapunov equation

W o = A>W oA + C>C
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Computation of the Gramians

The Gramians are usually computed by solving the discrete-time
Lyapunov equation X = AXA> + Q
The following methods can be used:

solve (I − A⊗ A)x = q
where x = Vec(X ) and q = Vec(Q)
→ numerically inefficient

use infinite sum
∞∑

k=0

AkQAk>

→ may required a lot of computation

use Hammarling’s method, based on Schur decomposition of
matrix A
→ efficient, but required a deep analysis of the computational
errors of the algorithm

see “Computational methods for linear matrix equations”, V. Simoncini
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Reliable computation of the L2-norm

Questions

How to have a reliable evaluation of the L2-norm in multiple
precision

How to proceed when A, B, C and D are interval matrices
(small radii, containing previously computed errors)
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Step 1. Bound on truncation error

Truncation error is the tail of the infinite sum:
∑

k>N

∣∣∣CAkB
∣∣∣

Suppose A = XEX−1, where E = diag(λ1, . . . , λn) is the
eigenvalue matrix and X is the eigenvector matrix. Then,

CAkB = CXE kX−1B =
n∑

l=1

R lλ
k
l

Bound on truncation error

M :=
n∑

l=1

|R l |
1− |λl |

|λl |
ρ(A)
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Appendix. L2-norm evaluation Appendix. Step-by-Step Error Analysis.

Step 1. Bound on truncation order

Lower bound on truncation order

N ≥
⌈

log ε1
m

log ρ(A)

⌉

M :=
n∑

l=1

|R l |
1− |λl |

|λl |
ρ(A)

where m is defined as m := min
i ,j
|M i ,j |.

Reliable evaluation

Interval Arithmetic and Rump’s Theory of Verified Inclusions are
used to determine a rigorous bound of N.
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Appendix. L2-norm evaluation Appendix. Step-by-Step Error Analysis.

Step 2. ”Diagonalization” of matrix A

T := V−1AV −∆2

V is some approximation on X
∆2 represents the element-by-element errors due to the two
matrix multiplications and the inversion of matrix V
T diagonal in dominant with very small other elements

‖T‖2 ≤ 1
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Appendix. L2-norm evaluation Appendix. Step-by-Step Error Analysis.

Step 2. ”Diagonalization” of matrix A

T := V−1AV −∆2

Ak = V (T + ∆2)kV−1

The error of substitution of A by VTV−1:

√
n(N + 1)(N + 2) ‖∆2‖F ‖CV ‖F

∥∥V−1B
∥∥
F

!
≤ ε2

8/12



Appendix. L2-norm evaluation Appendix. Step-by-Step Error Analysis.

Step 2. ”Diagonalization” of matrix A

T := V−1AV −∆2

Ak = V (T + ∆2)kV−1

The error of substitution of A by VTV−1:

√
n(N + 1)(N + 2) ‖∆2‖F ‖CV ‖F

∥∥V−1B
∥∥
F

!
≤ ε2

8/12



Appendix. L2-norm evaluation Appendix. Step-by-Step Error Analysis.

Step 2. ”Diagonalization” of matrix A

T := V−1AV −∆2

Ak = V (T + ∆2)kV−1

The error of substitution of A by VTV−1:

√
n(N + 1)(N + 2) ‖∆2‖F ‖CV ‖F

∥∥V−1B
∥∥
F

!
≤ ε2

A condition on the error-matrix ∆2:

‖∆2‖F ≤
1√

n(N + 1)(N + 2)

ε2

‖CV ‖F ‖V−1B‖F
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Step 3. Computing products C ′ and B ′

C ′ := CV + ∆3C

B′ := V−1B + ∆3B

where ∆3C
∈ Cp×n and ∆3B

∈ Cn×q are error-matrices.

Bound on the multiplication errors ∆3C
and ∆3B

:

‖∆3C
‖F ≤

1

3
√
n
· 1

N + 1

ε3

‖C ′‖F
‖∆3B

‖F ≤
1

3
√
n
· 1

N + 1

ε3

‖B′‖F
.
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Step 4. Powering T

Pk := T k −∆4k

∆4k ∈ Cn×n error-matrix on matrix powers, including error
propagation from the first to the last power.

Pk = TPk−1 + Γk ,

where Γk ∈ Cn×n is the error-matrix on the error of the matrix
multiplication at step k.

Bound on the error-matrix Γk

‖Γk‖F ≤
1√
n
· 1

N − 1
· 1

N + 1
· ε4

‖C ′‖F ‖B ′‖F
10/12
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Step 5. Computing Lk

Lk := C ′PkB ′ + ∆5k ,

where ∆5k ∈ Cp×q is the matrix of element-by-element errors for
the two matrix multiplications.

Bound on the error-matrix ∆5k

|∆5k | ≤
1

N + 1
· ε5.
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Step 6. Summation

SN = |D|+
N∑

l=0

|Ll |+ ∆6,

where the error-matrix ∆6 ∈ Cp×q represents the error of N + 1
absolute value accumulations.

Bound on the error matrix ∆6k

∆6k ≤
1

N
ε6, k = 1 . . .N
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