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Context: digital filters

On the one hand
o LTI filter with Infinite
Impulse Response

o lts transfer function:
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Context: digital filters

On the one hand On the other hand
o Hardware or Software target

o LTI filter with Infinite
o Implementation in

Impulse Response
o lts transfer function: Fixed-Point Arithmetic
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Context: implementation of LTI filters
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Context: implementation of LTI filters
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@ Transfer function generation
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Context: implementation of LTI filters

@ Transfer function generation

I' Coefficient quantization
@ Algorithm choice: State-space, Direct Form |, Direct Form II,

I' Large variety of structures with no common quality criteria
@ Software or Hardware implementation

I Constraints: power consumption, area, error, speed, etc.
I Computational errors due to finite-precision implementation
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Filter-to-code generator

structures  measures wordlengths target
H(z) SIF Reall_zatlon Fx-P Code.
quality algorithm generation

Figure: Automatic filter generator flow.
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Filter-to-code generator

structures  measures wordlengths target
H(z) SIF Reall_zatlon Fx-P Code.
quality algorithm generation

Figure: Automatic filter generator flow.
Before this thesis:

Stage 1: analytical filter realization representation
Stage 2: filter quality measures

Stage 3: fixed-point algorithm (naive approach, computational errors
not taken into account)

Stage 4: Fixed-Point Code Generator
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Filter-to-code generator

structures  measures wordlengths target
H(z) SIF Reall_zatlon Fx-P Code.
quality algorithm generation

Figure: Automatic filter generator flow.
During this thesis:

Stage 1: analytical filter realization representation
Stage 2: filter quality measures

Stage 3: fixed-point algorithm (s - rigorous approach,
computational errors ==+ taken into account)
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Representing Lattice Wave Digital Filters
with Specialized Implicit Framework!.

LAV. et al., "Fixed-Point Implementation of Lattice Wave Digital Filter: Comparison
and Error Analysis", in 23rd European Signal Processing Conference, EUSIPCO 2015
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Reliable implementation of digital filters
in Fixed-Point Arithmetic
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LTI filters

Let H := (A, B, C, D) be a LTI filter:

2 { x(k+1) = Ax(k)+ Bu(k)
y(k) = Cx(k)+ Du(k)

The filter H is considered Bounded Input Bounded Output stable if

p(A) <1
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Two's complement Fixed-Point arithmetic

_om 2m—1 20 2—1 2[

| m+1 —l
w

m—1
y=-2"ym+ > 2y
i=£

o Wordlength: w
@ Most Significant Bit position: m
@ Least Significant Bit position: £:=m—w +1
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Two's complement Fixed-Point arithmetic

m—1
y=-2"ym+ > 2y
i=t
e y(k) eR
@ wordlength w bits

e minimal Fixed-Point Format (FPF) is the least m:

Vk, y(k)€[-2™2m —2m~wHl]
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Reliable Fixed-Point implementation

Input:
e H=(AB,C,D)
@ bound on the input interval

e wordlength constraints

Determine: the Fixed-Point Formats s.t.
@ the least MSBs

@ no overflows occur

~» must take into account computational errors
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Reliable Fixed-Point implementation

Input:
e H=(AB,C,D)
@ bound on the input interval

e wordlength constraints

Determine: the Fixed-Point Formats s.t.
@ the least MSBs
@ no overflows occur

~» must take into account computational errors

How to proceed:

1. determine the output interval of all variables

2. analyze propagation of the error in filter implementation and
determine the FxPF
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Deducing the output interval?

2A.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple
Precision", ARITH22, 2015
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Basic brick: the Worst-Case Peak Gain theorem

Input u(k)
vk, |u(k)| <u

Amplitude

Time
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Basic brick: the Worst-Case Peak Gain theorem

Input w(k)
vk, |u(k)| <u

Amplitude

Time
amplification/attenuation
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Basic brick: the Worst-Case Peak Gain theorem

Output y(k)

Amplitude

Amplitude

Ly

Time

amplification/attenuation
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Basic brick: the Worst-Case Peak Gain theorem

Output y(k)
vk, ly(k)| < ((H)u

Amplitude

Amplitude

Ly

Time

amplification/attenuation

B A NEET

Worst-Case Peak Gain
((H)) = D] + kX_IO |CA*B|
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Computing the Worst-Case Peak Gain

Problem: compute the Worst-Case Peak Gain with arbitrary precision.

(H)) = |D|+§:‘CA"B‘

k=0

@ Cannot sum infinitely = need to truncate the sum

@ Once the sum is truncated, evaluate it in multiple precision
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Truncation

00 N
> |cA*B| — > |CA*B|
k=0 k=0
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Truncation

00 N
Y |cA*B| - Y |CAB|| <&
k=0

Compute an approximate lower bound on truncation order N such that the
truncation error is smaller than &;.

Lower bound on truncation order N

log

L LR
> | ———=2 |, with M:=

{ log p(A) -‘ Zl—\)\/W(A)

where

A — eigenvalues of matrix A

R, — *"residue matrix computed out of C, B, A
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Powering

N

> |cAkB|

k=0

A. Volkova Mid-term thesis defense May 11, 2016 14 / 24



Powering

N

S lcas

k=0

cancellation
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Powering

N

S lcas

k=0

cancellation

X = less cancellation
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Powering

N

S lcas

k=0

cancellation

\ X \X = less cancellation

A= XEX1
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Powering

N

S lcas

k=0

x : = cancellation
\ X x‘*\ = less cancellation
N
A= XEX1 Va~Xand TR E
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Powering

N
> |cAkB|
k=0
X = cancellation
X ‘%‘% = \ less cancellation
%@3
A= XEX1 Va~Xand TR E

l

A=V xTkxv?
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Powering

N N
d|ca'B| - Y |cvTiV B[] <«

k=0 k=0

Given matrix V compute T such that the error of substitution of the product
VT V! instead of A is less than e.
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Further steps

N N
Y |cAaB| - Y |cvTivIB|| <«
k=0 k=0
Apply the same approach for the other steps:
N N
> |CVT"V*13| - > |C’T"B’| <e3
k=0 k=0
Sio|C T~ T ICPB| <<

| SiolCPuB = i ILd| < e

’Z,kvzo |L| — S,\,‘ < €6
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Further steps

N N
Y |cAaB| - Y |cvTivIB|| <«
k=0 k=0
Apply the same approach for the other steps:
N N
> |CVT"V*13| - > |C’T"B’| <e3
k=0 k=0
Sio|C T~ T ICPB| <<

N N
‘Zk:o |C'PyB'| — Ek:O |Lk|) <es
’Z,kvzo|’-k|* S,\,‘ < €6

We can determine the output interval of a filter with arbitrary precision. )

A. Volkova Mid-term thesis defense May 11, 2016 15 / 24




Determining the Fixed-Point Formats®

3A.V. et al., "Determining Fixed-Point Formats for a Digital Filter Implementation
using the Worst-Case Peak Gain Measure", Asilomar 49, 2015
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Determining the Fixed-Point Formats

y { x(k+1) = Ax(k)+ Bu(k)
y(k) = Cx(k)+ Du(k)

We know that if Vk, |u;(k)| < @;, then

vk, lyi(k)l < (((H)) @); -
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Determining the Fixed-Point Formats

y { x(k+1) = Ax(k)+ Bu(k)
y(k) = Cx(k)+ Du(k)

We know that if Vk, |u;(k)| < @;, then

vk, lyi(k)] < (((H)) a);.
We need to find the least m, such that

Vk7 ’yi(k)‘ < 2my; _ 2my,-—wyl.+1.

A. Volkova Mid-term thesis defense May 11, 2016 17 / 24



Determining the Fixed-Point Formats

2 x(k+1) = Ax(k)+ Bu(k)
y(k) = Cx(k)+ Du(k)
We know that if Vk, |u;(k)| < @;, then
Vk, lyi(k)| < (((H)) a); .
We need to find the least m, such that

Vk7 ’yi(k)‘ < 2my; _ 2my,-—wyl.+1.

We have shown that m, can be computed with

= 1-w,,
my, = [logy ({(H)) &r); —logy (1 — 27"} ] .
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Taking the quantization errors into account

The exact filter H is:

2 { x (k+1) = Ax (k) + Bu(k)
y (k) = Cx (k)+ Du(k)
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Taking the quantization errors into account

The actually implemented filter H? is:

’HO{ xU(k+1) = Om(Ax%(k)+ Bu(k))
y<>(k) = Omy(CxO(k)+Du(k))

where ¢, is some operator ensuring faithful rounding:

[Om(x) — x| < om—w+1
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Taking the quantization errors into account

The actually implemented filter H? is:

240 { xV(k+1) = Ax°(k) + Bu(k) + e.(k)
yo(k) = Cx°(k) + Du(k) + ey (k)

with

lex(k)| < 2™ Wt and e, (k)| < 2wt
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Taking the quantization errors into account

The actually implemented filter H? is:

240 { xV(k+1) = Ax°(k) + Bu(k) + e.(k)
yo(k) = Cx°(k) + Du(k) + ey (k)

with
lex(k)| < 2mx—wxtl  qnd ley (k)| < omy—wy+l

u(k) yO(k)

A

e
X(k+1) X (k)
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Taking the quantization errors into account

The actually implemented filter H? is:

240 { xV(k+1) = Ax°(k) + Bu(k) + e.(k)
yo(k) = Cx°(k) + Du(k) + ey (k)

with

lex(k)| < 2™ Wt and e, (k)| < 2wt

u(k) YO (k) u(k) H

y(k)
- My, My ‘\} ,y,O,k
= /} \\u - _—

e . /
X(k+1) X (k) L (k
G0 Ha —am
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Numerical example

Example:
@ Random filter with 3 states, 1 input, 1 output
@ i = 5.125, wordlengths set to 7 bits

states output

x1(k) xa(k) x3(k) y(k)
Step 1 6 7 5 6
Step 2 6 7 6 6
Step 3 6 7 6 6

Table:  Evolution of the MSB positions
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Numerical examples

ooF 1
0 i
F o T i

Figure: The exact and quantized outputs of the example.
Quantized output does not pass over to the next binade.
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Numerical examples
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Figure: The exact and quantized third state of the example.
Quantized state passes over to the next binade.
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Conclusion

@ Represented a new structure in the SIF formalism
@ Provided reliable evaluation of the WCPG measure

o Applied the WCPG measure to determine the FxPF that guarantee no
overflow

Publications:

"Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple
Precision", ARITH22

"Determining Fixed-Point Formats for a Digital Filter Implementation using
the Worst-Case Peak Gain Measure", Asilomar 49

"Fixed-Point Implementation of Lattice Wave Digital Filter: Comparison and
Error Analysis", EUSIPCO 2015
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Perspectives

For filter implementation...
@ Solve the off-by-one problem for the MSBs
@ Get a deeper insight on the behavior of rounding errors
~» determine the probability distribution function
@ Plug all the stages of the generator into optimization routines
@ Accuracy of the algorithms for the design of IIR filters

~ take coefficient quantization errors into account in the filter error
analysis

~ consider coefficients as intervals and make necessary adaptations
in the algorithms within the filter
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For filter implementation...
@ Solve the off-by-one problem for the MSBs
@ Get a deeper insight on the behavior of rounding errors
~» determine the probability distribution function
@ Plug all the stages of the generator into optimization routines
@ Accuracy of the algorithms for the design of IIR filters

~ take coefficient quantization errors into account in the filter error
analysis

~ consider coefficients as intervals and make necessary adaptations
in the algorithms within the filter

Mathematical function implementation...

@ Draw parallels between filter and elementary function implementation.
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Merci !

Thank you!
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