
Towards reliable code generation for filters

Anastasia Volkova

PhD Director: Jean Claude Bajard
PhD Advisors: Thibault Hilaire, Christoph Lauter

May 11, 2016

A. Volkova Mid-term thesis defense May 11, 2016 1 / 24



Context: digital filters

u(k) y(k)H

On the one hand
LTI filter with Infinite
Impulse Response
Its transfer function:

H(z) =

n∑
i=0
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−i
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i=1
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On the other hand
Hardware or Software target
Implementation in
Fixed-Point Arithmetic
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Context: implementation of LTI filters

0 1 0 1 1
1 1 1 0 1
0 0 1 1 0
1 0 0 1 1

Transfer function generation

! Coefficient quantization

Algorithm choice: State-space, Direct Form I, Direct Form II, . . .

! Large variety of structures with no common quality criteria

Software or Hardware implementation

! Constraints: power consumption, area, error, speed, etc.
! Computational errors due to finite-precision implementation
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Filter-to-code generator

H(z) SIF
Realization
quality

FxP
algorithm

Code
generation

structures measures wordlengths target

Figure: Automatic filter generator flow.
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Figure: Automatic filter generator flow.
Before this thesis:

Stage 1: analytical filter realization representation
Stage 2: filter quality measures
Stage 3: fixed-point algorithm (naive approach, computational errors
not taken into account)
Stage 4: Fixed-Point Code Generator
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During this thesis:

Stage 1: analytical filter realization representation
Stage 2: filter quality measures
Stage 3: fixed-point algorithm (naive rigorous approach,
computational errors not taken into account)
Stage 4: Fixed-Point Code Generator
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Representing Lattice Wave Digital Filters
with Specialized Implicit Framework1.

1A.V. et al., "Fixed-Point Implementation of Lattice Wave Digital Filter: Comparison
and Error Analysis", in 23rd European Signal Processing Conference, EUSIPCO 2015
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Reliable implementation of digital filters
in Fixed-Point Arithmetic
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LTI filters

Let H := (A,B,C ,D) be a LTI filter:

H
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

The filter H is considered Bounded Input Bounded Output stable if

ρ(A) < 1

A. Volkova Mid-term thesis defense May 11, 2016 7 / 24



Two’s complement Fixed-Point arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

y = −2mym +
m−1∑

i=`

2iyi

Wordlength: w
Most Significant Bit position: m
Least Significant Bit position: ` := m − w + 1

∀k , y(k) ∈ [−2m; 2m − 2m−w+1]
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y(k) ∈ R

wordlength w bits
minimal Fixed-Point Format (FPF) is the least m:
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Reliable Fixed-Point implementation

Input:
H = (A,B,C ,D)

bound on the input interval
wordlength constraints

Determine: the Fixed-Point Formats s.t.
the least MSBs
no overflows occur
 must take into account computational errors

How to proceed:
1. determine the output interval of all variables
2. analyze propagation of the error in filter implementation and

determine the FxPF
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Deducing the output interval2

2A.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple
Precision", ARITH22, 2015
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Basic brick: the Worst-Case Peak Gain theorem

Time
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Input u(k)
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Basic brick: the Worst-Case Peak Gain theorem

Time
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Output y(k)

8k, |y(k)|  hhHii ū

H y(k)u(k)

amplification/attenuation

hhHii = |D| +
1P

k=0

|CAkB|

Worst-Case Peak Gain

Time
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Computing the Worst-Case Peak Gain

Problem: compute the Worst-Case Peak Gain with arbitrary precision.

〈〈H〉〉 = |D|+
∞∑

k=0

∣∣∣CAkB
∣∣∣

Cannot sum infinitely ⇒ need to truncate the sum
Once the sum is truncated, evaluate it in multiple precision
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Truncation

∣∣∣∣∣

∞∑

k=0

∣∣CAkB
∣∣ −→

−

N∑

k=0

∣∣CAkB
∣∣

∣∣∣∣∣ ≤ ε1

Compute an approximate lower bound on truncation order N such that the
truncation error is smaller than ε1.

Lower bound on truncation order N

N ≥
⌈
log ε1
‖M‖min

log ρ(A)

⌉
, with M :=

n∑

l=1

|R l |
1− |λl |

|λl |
ρ(A)

where

λ− eigenvalues of matrix A

R l − l thresidue matrix computed out of C ,B,λ
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Powering

(

N∑

k=0

∣∣CAkB
∣∣

−→−
N∑

k=0

∣∣CVT kV−1B
∣∣(≤ ε2

× = cancellation

× = less cancellation

A = XEX−1 V ≈ X and T ≈ E

T ≈ V−1 × A× V

Ak ≈ V × T k × V−1
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Powering

∣∣∣∣∣
N∑

k=0

∣∣CAkB
∣∣ −

N∑

k=0

∣∣CVT kV−1B
∣∣
∣∣∣∣∣ ≤ ε2

Given matrix V compute T such that the error of substitution of the product
VT kV−1 instead of Ak is less than ε2.

We can determine the output interval of a filter with arbitrary precision.
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Further steps

∣∣∣∣∣
N∑

k=0

∣∣CAkB
∣∣ −

N∑

k=0

∣∣CVT kV−1B
∣∣
∣∣∣∣∣ ≤ ε2

Apply the same approach for the other steps:
∣∣∣∣

N∑
k=0

∣∣CVT kV−1B
∣∣−

N∑
k=0

∣∣C ′T kB ′
∣∣
∣∣∣∣ ≤ ε3

∣∣∣
∑N

k=0

∣∣C ′T kB ′
∣∣− ∑N

k=0 |C ′PkB ′|
∣∣∣ ≤ ε4

∣∣∣
∑N

k=0 |C ′PkB ′| −
∑N

k=0 |Lk |
∣∣∣ ≤ ε5

∣∣∣
∑N

k=0 |Lk | − SN

∣∣∣ ≤ ε6

We can determine the output interval of a filter with arbitrary precision.
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Determining the Fixed-Point Formats3

3A.V. et al., "Determining Fixed-Point Formats for a Digital Filter Implementation
using the Worst-Case Peak Gain Measure", Asilomar 49, 2015
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Determining the Fixed-Point Formats

H
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

We know that if ∀k, |u i (k)| ≤ ū i , then

∀k, |y i (k)| ≤ (〈〈H〉〉 ū)i .

We need to find the least my such that

∀k , |y i (k)| ≤ 2myi − 2myi
−w yi

+1.

We have shown that my can be computed with

myi =
⌈
log2 (〈〈H〉〉 ū)i − log2

(
1− 21−w yi

)⌉
.
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(
1− 21−w yi

)⌉
.

A. Volkova Mid-term thesis defense May 11, 2016 17 / 24



Taking the quantization errors into account

The exact filter H is:

H

♦

{
x

♦

(k + 1) =

♦mx (

Ax

♦

(k) + Bu(k)

) + εx(k)

y

♦

(k) =

♦my (

Cx

♦

(k) + Du(k)

) + εy (k)

H

H�

y⌃(k)

u(k) y(k)

�(k)

✓
"x(k)
"y(k)

◆

mx, my
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Taking the quantization errors into account

The actually implemented filter H♦ is:

H♦
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x♦(k + 1) = ♦mx (Ax♦(k) + Bu(k))

+ εx(k)

y♦(k) = ♦my (Cx♦(k) + Du(k))

+ εy (k)

where ♦m is some operator ensuring faithful rounding:

|♦m(x)− x | ≤ 2m−w+1.
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Numerical example

Example:
Random filter with 3 states, 1 input, 1 output
ū = 5.125, wordlengths set to 7 bits

states output
x1(k) x2(k) x3(k) y(k)

Step 1 6 7 5 6
Step 2 6 7 6 6
Step 3 6 7 6 6

Table: Evolution of the MSB positions
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Numerical examples

Time

A
m

p
li
tu

d
e

ȳ
y⌃(k)

y(k)

ȳ⌃

Figure: The exact and quantized outputs of the example.
Quantized output does not pass over to the next binade.
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Numerical examples

Time

A
m

p
li
tu

d
e

x̄3

x⌃
3 (k)

x3(k)

x̄⌃
3

Figure: The exact and quantized third state of the example.
Quantized state passes over to the next binade.

A. Volkova Mid-term thesis defense May 11, 2016 21 / 24



Conclusion

Represented a new structure in the SIF formalism
Provided reliable evaluation of the WCPG measure
Applied the WCPG measure to determine the FxPF that guarantee no
overflow

Publications:

"Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple
Precision", ARITH22

"Determining Fixed-Point Formats for a Digital Filter Implementation using
the Worst-Case Peak Gain Measure", Asilomar 49

"Fixed-Point Implementation of Lattice Wave Digital Filter: Comparison and
Error Analysis", EUSIPCO 2015
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Perspectives

For filter implementation...
Solve the off-by-one problem for the MSBs
Get a deeper insight on the behavior of rounding errors
 determine the probability distribution function

Plug all the stages of the generator into optimization routines
Accuracy of the algorithms for the design of IIR filters
 take coefficient quantization errors into account in the filter error

analysis
 consider coefficients as intervals and make necessary adaptations

in the algorithms within the filter

Mathematical function implementation...
Draw parallels between filter and elementary function implementation.
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Merci ! 

Thank you!

Спасибо!

Дякую!
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