S

UNIVERSITES

Sorbonne Universités, UPMC Univ Paris 06,

AAA1 SORBONNE

MOTIVATION

Implementation of Linear Time-Invariant systems in finite precision:

e (Coeflicient quantization, computational errors and their propagation o
e Software/Hardware implementation under constraints o

e Large variety of possible structures (e.g. Direct Forms, Lattices, etc.) o

Automatic Fixed-Point code Generator for filters for which we:

Use unified analytical representation of linear data-flows
Can describe any analytical

Adopted numerous classical

described by different means (graphical, analytical) o

e Most error analysis are based on statistical models = no guarantee on e
finite-precision implementation

SIE

Specialized Implicit Form is an analytical matrix- Simulink
based representation of input/output relationship: Data F10W> to
J 0 0\/tk+1) 0 M N\/tk) S -
—-K I, O |lxk+1)|=10 P Q || x(k)
-L 0 I k 0 R S/\u(k o
p y(k) (k) H(z) > -
o u(k) - inputs ¢ t(k) - temp. variables
o y(k) - outputs ¢ ax(k) - states

SIMULINK-TO-SIF

Step 1: Label variables
e states «— delays

Some properties of SIF:

e LLasy algebraic computations

e Can describe any linear data flow o SIF coefficients +— gain elements

e Unifies analysis and implementation e temporary variables «— outputs of gain and

Important: order of computations is preserved in sum operators

the lower-triangular matrix J. For example,
y=Mjy(Mx)

is described using temporary variable t with
I 0\ (t\ (M, .
—M2 I Yy - 0

LINEAR DATA FLOW

Step 2: Form the Sums-of-Products
e merge all directly cascading blocks

® regroup successive suims

e flatten design if subsystem is present

Step 3: Preserve the order of computations
e topological sort of temporary variables

e remove unnecessary variables

For example, a data-flow

ut(k t(k+1)
-H@
J y(K)
G 7T e
x(k)

x(k+1)
Corresponds to SIF equations:

t(tk+1) =6-x2(k)+5-ui(k)
EXAMPLE OF A LINEAR DATA FLOW: r(k+1) =1-us(k)
LATTICE WAVE DIGITAL FILTER y =3-t(k+1)

Provide fully rigorous and
Generate C and VHDL code (for ASICs and FPGAs)

SORBONNE RELIABLE FIXED-POINT IMPLEMENTATION OF LINEAR DATA-FLOWS
Upmc Thibault HILAIRE, Anastasia VOLKOVA and Maminionja RAVOSON

UMR 7606, LIP6, F-75005, Paris, France

CONTRIBUTIONS

and graphical representation with our framework
and developed new quality measures

reliable implementation in Fixed-Point arithmetic

PERSPECTIVES

We plan to:

e Perform a reliable verification of specification-to-
implementation correspondance

e Optimize Software/Hardware implementation for vari-
ous constraints using our rigorous approach

e Wrap the generator with optimization routines to cre-

ate a complete and efficient filter-to-code tool

measures wordlengths tarfet
Realization FxP Code
quality algorithm generation

(QUALITY MEASURES

Classical measures

e Based on sensitivity wrt. the coeflicients:
— transfer function and pole/zero sensitivities

e Signal to Quantization Noise Ratio
— errors modeled as noises (||Hall,)

New measures: rigorous approach

Theorem 1. For a stable LTI system H, if
Vk |u(k)| < u, then the output is bounded

vk |y(k)| < u ((H)),
where ((H)) is the Worst-Case Peak Gain (WCPG)

matrix of the system.

Theorem 2. The finite precision output y*(k) is
bounded by the outputs of the exact and special error

filters:— |y* (k)| < |y(k)| + [A(K)]
y(k)

finite precision y* (]C)

effects —>
A(k)

eITOTS HA

Ha shows the propagation of finite precision effects.

FIXED-POINT IMPLEMENTATION

Most Significant Bit determination
Reliable approach based on mathematical proofs:

Step 1: Determine output interval using our rigor-
ous evaluation of the WCPG in arbitrary precision.

Step 2: Deduce the Fixed-Point implementation
parameters while taking into account the propaga-
tion of computational errors through the filter.

Important: we prove that no overflow occurs and
M®SB positions are overestimated at most by one.

Sum-of-Products

The computations involves sums of products by
constants. They can be performed with faithful
rounding using [log, V| guard bits.

Least Significant Bit determination
The output error is analytically determined from
the word-lengths w

= 2((Ha)) ([(H)) @], x 27%)

The word-length optimization problem can be
solved with a Mixed-Integer Non Linear Program-
ming solver.

CODE GENERATION

Our tool can then generate code:

e C code for uCs and DSPs
e VHDL for ASICs (using Stratus®)
e VHDL for FPGAs (using FloPoCo?)

“https://soc-extras.lip6.fr/en/coriolis/
®Flopoco: http://flopoco.gforge.inria.fr/

