

MOTIVATION

Implementation of Linear Time-Invariant systems in finite precision:

- Coefficient quantization, computational errors and their propagation
- Software/Hardware implementation under constraints
- Large variety of possible structures (e.g. Direct Forms, Lattices, etc.) described by different means (graphical, analytical)
- Most error analysis are based on statistical models \Rightarrow no guarantee on finite-precision implementation

SIF

Specialized Implicit Form is an analytical matrix-based representation of input/output relationship:

$$\begin{pmatrix} \mathbf{J} & \mathbf{0} & \mathbf{0} \\ -\mathbf{K} & \mathbf{I}_n & \mathbf{0} \\ -\mathbf{L} & \mathbf{0} & \mathbf{I}_p \end{pmatrix} \begin{pmatrix} \mathbf{t}(k+1) \\ \mathbf{x}(k+1) \\ \mathbf{y}(k) \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{M} & \mathbf{N} \\ \mathbf{0} & \mathbf{P} & \mathbf{Q} \\ \mathbf{0} & \mathbf{R} & \mathbf{S} \end{pmatrix} \begin{pmatrix} \mathbf{t}(k) \\ \mathbf{x}(k) \\ \mathbf{u}(k) \end{pmatrix}$$

$\diamond \mathbf{u}(k)$ - inputs $\diamond \mathbf{t}(k)$ - temp. variables
 $\diamond \mathbf{y}(k)$ - outputs $\diamond \mathbf{x}(k)$ - states

Some properties of SIF:

- Easy algebraic computations
- Can describe any linear data flow
- Unifies analysis and implementation

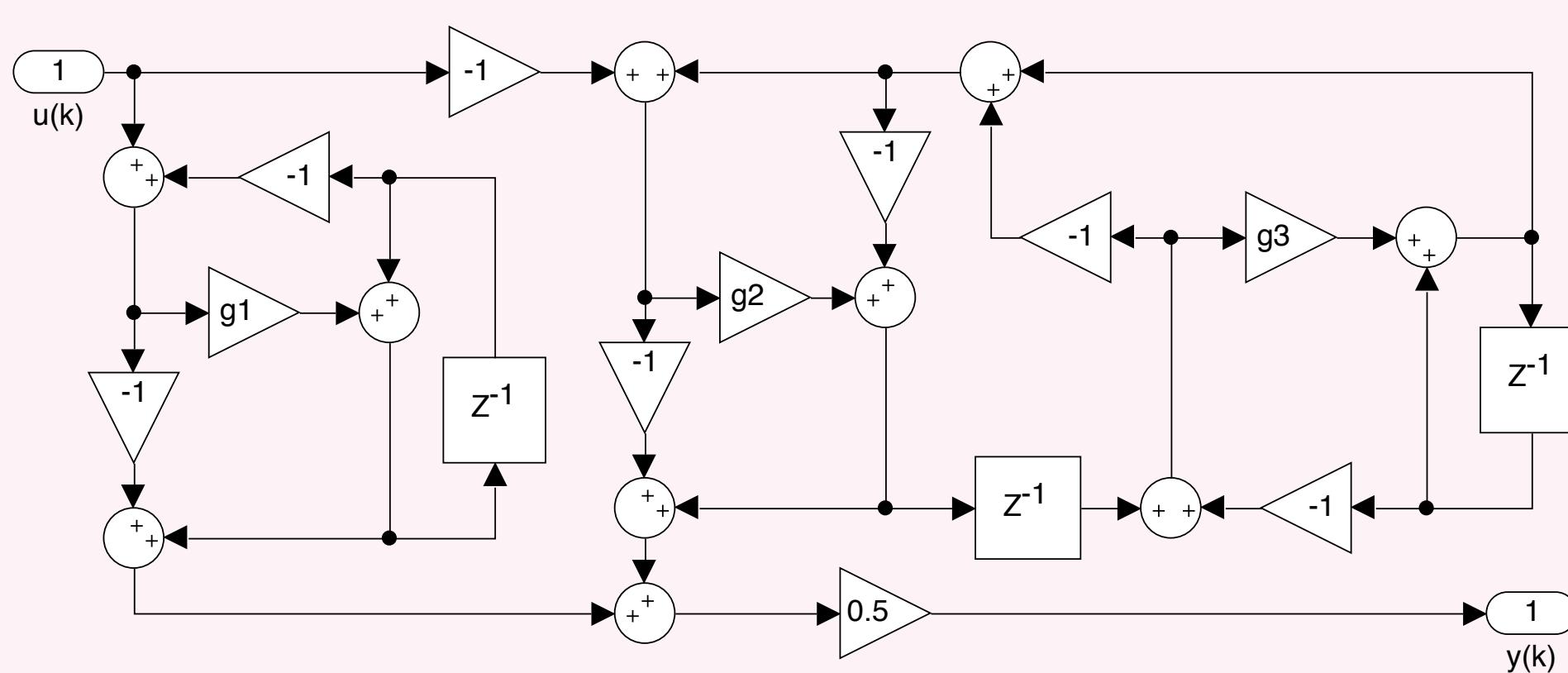
Important: order of computations is preserved in the lower-triangular matrix \mathbf{J} . For example,

$$\mathbf{y} = \mathbf{M}_2(\mathbf{M}_1\mathbf{x})$$

is described using temporary variable \mathbf{t} with

$$\begin{pmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{M}_2 & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{t} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{M}_1 \\ \mathbf{0} \end{pmatrix} \mathbf{x}$$

LINEAR DATA FLOW

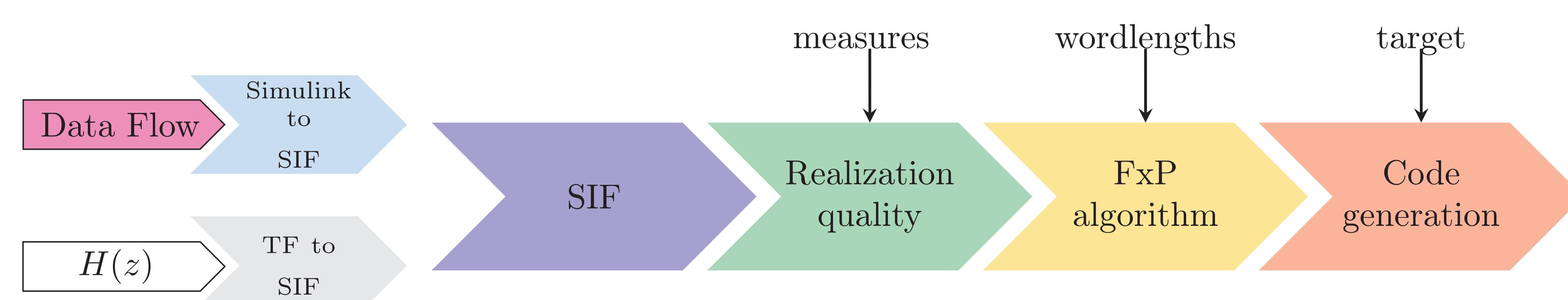


EXAMPLE OF A LINEAR DATA FLOW:
LATTICE WAVE DIGITAL FILTER

CONTRIBUTIONS

Automatic Fixed-Point code Generator for filters for which we:

- Use unified *analytical* representation of linear data-flows
- Can describe any analytical and graphical representation with our framework
- Adopted numerous classical and developed new quality measures
- Provide **fully rigorous** and **reliable** implementation in Fixed-Point arithmetic
- Generate C and VHDL code (for ASICs and FPGAs)



SIMULINK-TO-SIF

Step 1: Label variables

- states \leftarrow delays
- SIF coefficients \leftarrow gain elements
- temporary variables \leftarrow outputs of gain and sum operators

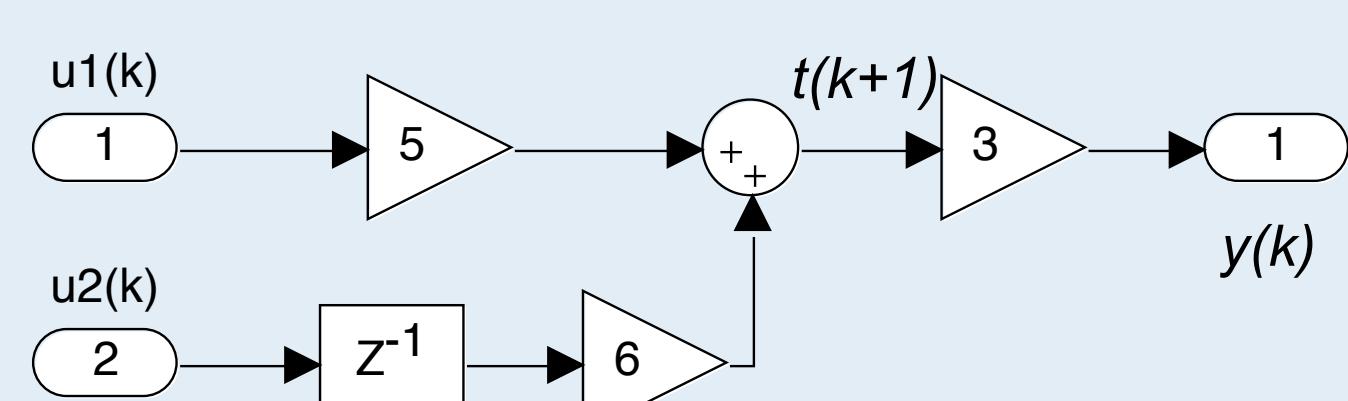
Step 2: Form the Sums-of-Products

- merge all directly cascading blocks
- regroup successive sums
- flatten design if subsystem is present

Step 3: Preserve the order of computations

- topological sort of temporary variables
- remove unnecessary variables

For example, a data-flow



Corresponds to SIF equations:

$$\begin{cases} t(k+1) = 6 \cdot x(k) + 5 \cdot u_1(k) \\ x(k+1) = 1 \cdot u_2(k) \\ y = 3 \cdot t(k+1) \end{cases}$$

QUALITY MEASURES

Classical measures

- Based on sensitivity wrt. the coefficients:
→ transfer function and pole/zero sensitivities
- Signal to Quantization Noise Ratio
→ errors modeled as noises ($\|\mathcal{H}_\Delta\|_2$)

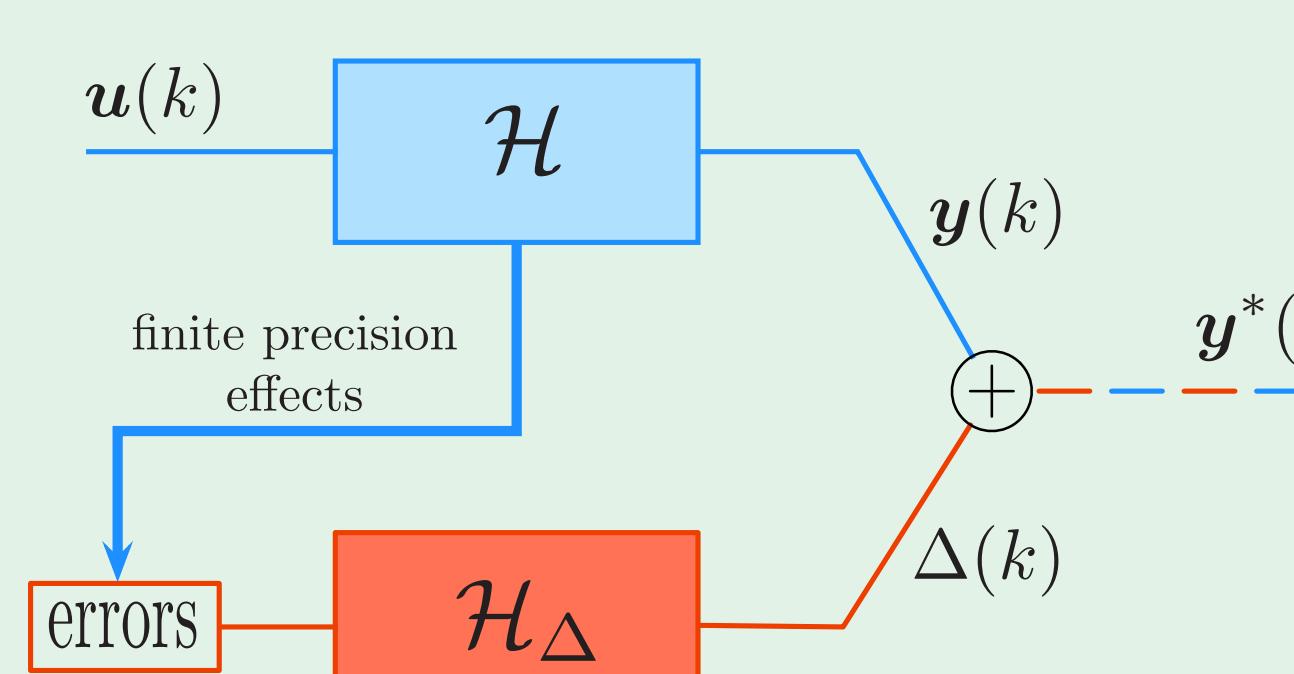
New measures: rigorous approach

Theorem 1. For a stable LTI system \mathcal{H} , if $\forall k |\mathbf{u}(k)| \leq \bar{\mathbf{u}}$, then the output is bounded

$$\forall k |\mathbf{y}(k)| \leq \bar{\mathbf{u}} \langle\langle \mathcal{H} \rangle\rangle,$$

where $\langle\langle \mathcal{H} \rangle\rangle$ is the Worst-Case Peak Gain (WCPG) matrix of the system.

Theorem 2. The finite precision output $\mathbf{y}^*(k)$ is bounded by the outputs of the exact and special error filters: $|\mathbf{y}^*(k)| \leq |\mathbf{y}(k)| + |\Delta(k)|$



\mathcal{H}_Δ shows the propagation of finite precision effects.

PERSPECTIVES

We plan to:

- Perform a reliable verification of specification-to-implementation correspondence
- Optimize Software/Hardware implementation for various constraints using our rigorous approach
- Wrap the generator with optimization routines to create a complete and efficient filter-to-code tool

FIXED-POINT IMPLEMENTATION

Most Significant Bit determination

Reliable approach based on mathematical proofs:

Step 1: Determine output interval using our rigorous evaluation of the WCPG in arbitrary precision.

Step 2: Deduce the Fixed-Point implementation parameters while taking into account the propagation of computational errors through the filter.

Important: we prove that no overflow occurs and MSB positions are overestimated at most by one.

Sum-of-Products

The computations involves sums of products by constants. They can be performed with **faithful rounding** using $\lceil \log_2 N \rceil$ guard bits.

Least Significant Bit determination

The output error is analytically determined from the word-lengths \mathbf{w}

$$\bar{\Delta} = 2 \langle\langle \mathcal{H}_\Delta \rangle\rangle (\lceil \langle\langle \mathcal{H} \rangle\rangle \bar{\mathbf{u}} \rceil \times 2^{-\mathbf{w}})$$

The word-length optimization problem can be solved with a Mixed-Integer Non Linear Programming solver.

CODE GENERATION

Our tool can then generate code:

- C code for μ Cs and DSPs
- VHDL for ASICs (using Stratus^a)
- VHDL for FPGAs (using FloPoCo^b)

^a<https://soc-extras.lip6.fr/en/coriolis/>

^bFlopoco: <http://flopoco.gforge.inria.fr/>