
reliablefixed-point implementationoflineardata-flows
Thibault HILAIRE, Anastasia VOLKOVA and Maminionja RAVOSON

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

Motivation

Implementation of Linear Time-Invariant systems in finite precision:

• Coefficient quantization, computational errors and their propagation
• Software/Hardware implementation under constraints
• Large variety of possible structures (e.g. Direct Forms, Lattices, etc.)
described by different means (graphical, analytical)
• Most error analysis are based on statistical models ⇒ no guarantee on
finite-precision implementation

Contributions

Automatic Fixed-Point code Generator for filters for which we:

• Use unified analytical representation of linear data-flows
• Can describe any analytical and graphical representation with our framework
• Adopted numerous classical and developed new quality measures
• Provide fully rigorous and reliable implementation in Fixed-Point arithmetic
• Generate C and VHDL code (for ASICs and FPGAs)

Perspectives

We plan to:

• Perform a reliable verification of specification-to-
implementation correspondance
• Optimize Software/Hardware implementation for vari-
ous constraints using our rigorous approach
• Wrap the generator with optimization routines to cre-
ate a complete and efficient filter-to-code tool

SIF
Specialized Implicit Form is an analytical matrix-
based representation of input/output relationship: J 0 0
−K In 0
−L 0 Ip

t(k + 1)
x(k + 1)
y(k)

=

0 M N
0 P Q
0 R S

 t(k)
x(k)
u(k)


� u(k) - inputs

� y(k) - outputs

� t(k) - temp. variables

� x(k) - states

Some properties of SIF:

• Easy algebraic computations
• Can describe any linear data flow
• Unifies analysis and implementation

Important: order of computations is preserved in
the lower-triangular matrix J . For example,

y = M2 (M1x)

is described using temporary variable t with(
I 0
−M2 I

)(
t
y

)
=

(
M1

0

)
x

Linear Data Flow

g1

-1

-1

g2

-1

-1

-1

g3-1

-1

1
u(k)

1
y(k)

Z-1

Z-1

Z-1

0.5

Example of a linear data flow:
Lattice Wave Digital Filter

H(z)
TF to

SIF

Data Flow
Simulink

to

SIF

SIF
Realization
quality

FxP
algorithm

Code
generation

measures wordlengths target

Simulink-to-SIF
Step 1: Label variables
• states ←− delays
• SIF coefficients ←− gain elements
• temporary variables ←− outputs of gain and

sum operators

Step 2: Form the Sums-of-Products
• merge all directly cascading blocks
• regroup successive sums
• flatten design if subsystem is present

Step 3: Preserve the order of computations
• topological sort of temporary variables
• remove unnecessary variables

For example, a data-flow

11
u1(k)

5

2
u2(k)

Z-1 6

3

x(k)x(k+1)

t(k+1)

y(k)

Corresponds to SIF equations: t(k + 1) = 6 · x(k) + 5 · u1(k)
x(k + 1) = 1 · u2(k)

y = 3 · t(k + 1)

Quality measures
Classical measures

• Based on sensitivity wrt. the coefficients:
→ transfer function and pole/zero sensitivities

• Signal to Quantization Noise Ratio
→ errors modeled as noises (‖H∆‖2)

New measures: rigorous approach
Theorem 1. For a stable LTI system H, if
∀k |u(k)| ≤ ū, then the output is bounded

∀k |y(k)| ≤ ū 〈〈H〉〉 ,
where 〈〈H〉〉 is the Worst-Case Peak Gain (WCPG)
matrix of the system.

Theorem 2. The finite precision output y∗(k) is
bounded by the outputs of the exact and special error
filters: |y∗(k)| ≤ |y(k)|+ |∆(k)|

errors H�

y⇤(k)

u(k)

y(k)

�(k)

finite precision
e↵ects

H

H∆ shows the propagation of finite precision effects.

Fixed-Point Implementation
Most Significant Bit determination
Reliable approach based on mathematical proofs:

Step 1: Determine output interval using our rigor-
ous evaluation of the WCPG in arbitrary precision.
Step 2: Deduce the Fixed-Point implementation
parameters while taking into account the propaga-
tion of computational errors through the filter.

Important: we prove that no overflow occurs and
MSB positions are overestimated at most by one.

Sum-of-Products
The computations involves sums of products by
constants. They can be performed with faithful
rounding using dlog2Ne guard bits.

Least Significant Bit determination
The output error is analytically determined from
the word-lengths w

∆ = 2 〈〈H∆〉〉
(⌈
〈〈H〉〉 ū

⌉
2
× 2−w

)
The word-length optimization problem can be
solved with a Mixed-Integer Non Linear Program-
ming solver.

Code Generation
Our tool can then generate code:
• C code for µCs and DSPs
• VHDL for ASICs (using Stratusa)
• VHDL for FPGAs (using FloPoCob)

ahttps://soc-extras.lip6.fr/en/coriolis/
bFlopoco: http://flopoco.gforge.inria.fr/

