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Context: digital filters
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Context: digital filters

Input/ a.u.
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On the one hand On the other hand
o LTI filter with Infinite @ Hardware or Software target
Impulse Response @ Implementation in
@ lts transfer function: Fixed-Point Arithmetic
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Context: implementation of LTI filters
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Context: implementation of LTI filters
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@ Transfer function generation
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Context: implementation of LTI filters
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@ Transfer function generation
I' Coefficient quantization
@ Algorithm choice: State-space, Direct Form |, Direct Form II,
I' Large variety of structures with no common quality criteria

@ Software or Hardware implementation
I Constraints: power consumption, area, error, speed, etc.
I Computational errors due to finite-precision implementation
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Filter-to-code generator
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Figure: Automatic filter generator flow.
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Filter-to-code generator
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Figure: Automatic filter generator flow.

Stage 1: analytical filter realization representation
Stage 2: filter quality measures

Stage 3: reliable fixed-point algorithm (rigorous approach,
computational errors taken into account)

Stage 4: Fixed-Point Code Generator
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SIF and State-Space

A linear signal processing or control algorithm can be implemented under
various structures (algorithms).
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SIF and State-Space

A linear signal processing or control algorithm can be implemented under
various structures (algorithms).

They can be all encompassed in a matrix representation called SIF
(Specialized Implicit Framework).
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LTI filters

Let H := (A, B, C, D) be a LTI filter in state-space representation:

2 { x(k+1) = Ax(k)+ Bu(k)
y(k) = Cx(k)+ Du(k)

The filter H is considered Bounded Input Bounded Output stable if
p(A) < 1.

Reliable implementation:
@ determine the output interval

@ take into account the computational error propagation and determine
the Fixed-Point implementation parameters
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Basic brick: the Worst-Case Peak Gain theorem
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Input w(k)
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Basic brick: the Worst-Case Peak Gain theorem
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Basic brick: the Worst-Case Peak Gain theorem

Output y(k)
vk, ly(k)| < ((H)u
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Worst-Case Peak Gain
((H)) = D] + kX_IO |CA*B|
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Computing the Worst-Case Peak Gain (WCPG)

When A, B, C and D are exact:
— we compute the Worst-Case Peak Gain with arbitrary precision®.

LA.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple
Precision", ARITH22, 2015
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Computing the Worst-Case Peak Gain (WCPG)

When A, B, C and D are exact:

— we compute the Worst-Case Peak Gain with arbitrary precision®

Cases when A, B, C and D are not exact:

e coefficients are results of finite-precision computations
(e.g. quantization, SIF «» State-Space transformation etc.)

To take these properties into account we use Interval Arithmetic.
— Need to compute the WCPG in interval arithmetic.

Notation: interval matrix M7 is centered at mid(M?) and
has radius rad(M?).

LA.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple
Precision", ARITH22, 2015
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Interval WCPG computation

Problem: compute the interval Worst-Case Peak Gain matrix

((HT)) = |D¥| + i [Z 58
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Interval WCPG computation

Problem: compute the interval Worst-Case Peak Gain matrix

((HT)) = |D¥| + i [Z 58

Approach:

e Cannot sum infinitely = need to truncate the sum

o Evaluate the truncated sum <<H%>> using multiple precision interval
arithmetic
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Interval WCPG computation

Problem: compute the interval Worst-Case Peak Gain matrix

((HT)) = |D¥| + kf; [Z 58

Approach

e Cannot sum infinitely = need to truncate the sum

o Evaluate the truncated sum <<7—[ >> using multiple precision interval
arithmetic

Ensure

o enclosure property: V ((H)) € ((H1)) = ((H)) € ((HK))

o if coefficients’ radii — 0 and the precision — oo, then <<7—[ >> is a
e-neighbourhood of the exact WCPG matrix for arbitrary ¢ > 0

| A

v
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Truncation
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Truncation

<e1

k=0

mid(i’CIAIkBI‘ - zlv:’CIAIkBID
k=0

Compute an approximate lower bound on truncation order N such that the
truncation error of the center matrix is smaller than &;.

Lower bound on truncation order N

logmfﬂ R W L B b
NZLogp(AI) » with M '_;l—P\ﬂP(AI)

where

(R ) == (CIVI)k;(VI_lBI);/ — i*'residue matrix

A, VT — enclosures for the eigenvalues and eigenvectors of matrix A”

v
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Computing the eigensystem of interval matrix

Eigenvalues of interval matrix
Compute enclosures AT such that YA € AT A\(A) € AT

| A

Approach

Following the works of Xu and Rachid (1996) and Rohn(1998), use the
Generalized Gershgorin's Circles theorem.

A
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Computing the eigensystem of interval matrix

Eigenvalues of interval matrix

Compute enclosures AZ such that YA € AT, A\(A) € T

| A

Approach

Following the works of Xu and Rachid (1996) and Rohn(1998), use the
Generalized Gershgorin's Circles theorem.

A

Eigenvectors of interval matrix

Given the enclosures on eigenvalues AZ, compute enclosures V7 such that
YA e AL VA e AT if A\ = AV, then V € VI,

Approach

Use Rump'’s theory of Verified Inclusions.
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Evaluating the truncated sum

N
. k
Once the sum is truncated, we need to compute > |CZA’ BI‘.
k=0

@ Take into account the truncation error by adding it to the radii of the
computed interval WCPG <<7:[\%,>>
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Evaluating the truncated sum

N
. k
Once the sum is truncated, we need to compute > |CZA’ BI‘.
k=0

@ Take into account the truncation error by adding it to the radii of the

computed interval WCPG <<7:[\%,>>

: . . K . .
o Naive powering a dense matrix AZ" to large k yeilds wide intervals
— diagonalize the interval matrix using eigendecomposition AZ, V7

= now we compute Z ‘CIVI/\IkVI lBI‘

@ Adjust precision for each mterval matrix multiplication, addition and
absolute value computation s.t. zero coefficients radii yeild

o (1620 = ((FR))) | <
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Numerical Example

Random stable filter with 1 input, 1 output, 10 states.
Interval coefficients obtained via quantization to 16 bits (round up).
e = 2—64

@ Spectral radius: [0.983967 £ 4.25¢ — 14]
@ Truncation order: N = 4847

Approach mid rad

WCPG original system 91.535729 264

WCPG quantized system 01.535743 264

Naive iIWCPG 91.535730 4.750624 x 10183
iIWCPG quantized system 91.535729 1.568769

iWCPG zero radii 91.535729 5.568769 x 10722

v Inclusion property ensured

v~ Zero radii give e-neighbourhood of the exact WCPG

Volkova, Lauter, Hilaire SCAN 2016 September 28, 2016 13 /15



Conclusion and Perspectives

Conclusion

o Applied traditional techniques for the eigendecomposition of an
interval matrix combined with multiple precision interval arithmetic.

@ Ensured the enclosure property

@ Ensure that with tightening the coefficients’ intervals the computed
result converges to the e-neighbourhood of the exact one

Perspectives

@ Integrate our approach into the automatic filter generator to take into
account the quantization of coefficients.

o Adapt the filter quality measures for the interval case (require interval
discrete Lyapunov equations solver)
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