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Context: implementation of LTI filters

0 1 0 1 1
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Transfer function generation

! Coefficient quantization

Algorithm choice: State-space, Direct Form I, Direct Form II, . . .

! Large variety of structures with no common quality criteria

Software or Hardware implementation

! Constraints: power consumption, area, error, speed, etc.
! Computational errors due to finite-precision implementation
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Filter-to-code generator

H(z) SIF
Realization
quality

FxP
algorithm
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structures measures wordlengths target

Figure: Automatic filter generator flow.

Stage 1: analytical filter realization representation
Stage 2: filter quality measures
Stage 3: reliable fixed-point algorithm (rigorous approach,
computational errors taken into account)
Stage 4: Fixed-Point Code Generator
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SIF and State-Space

A linear signal processing or control algorithm can be implemented under
various structures (algorithms).
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State-Space

All our measures and analysis
on SIF can be transformed on
measures on different
State-Spaces.
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LTI filters

Let H := (A,B,C ,D) be a LTI filter in state-space representation:

H
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

The filter H is considered Bounded Input Bounded Output stable if

ρ(A) < 1.

Reliable implementation:
determine the output interval
take into account the computational error propagation and determine
the Fixed-Point implementation parameters
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Basic brick: the Worst-Case Peak Gain theorem
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Computing the Worst-Case Peak Gain (WCPG)

When A,B,C and D are exact:
−→ we compute the Worst-Case Peak Gain with arbitrary precision1.

Cases when A,B,C and D are not exact:
coefficients are results of finite-precision computations
(e.g. quantization, SIF ↔ State-Space transformation etc.)

To take these properties into account we use Interval Arithmetic.
−→ Need to compute the WCPG in interval arithmetic.

Notation: interval matrix MI is centered at mid(MI) and
has radius rad(MI).

1A.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple
Precision", ARITH22, 2015
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Interval WCPG computation

Problem: compute the interval Worst-Case Peak Gain matrix

〈〈
HI
〉〉

=
∣∣DI

∣∣+
∞∑

k=0

∣∣∣CIAIkBI
∣∣∣ .

Approach:
Cannot sum infinitely ⇒ need to truncate the sum
Evaluate the truncated sum

〈〈
HIN
〉〉

using multiple precision interval
arithmetic

Ensure:
enclosure property: ∀ 〈〈H〉〉 ∈

〈〈
HI
〉〉

=⇒ 〈〈H〉〉 ∈
〈〈
HIN
〉〉

if coefficients’ radii → 0 and the precision →∞, then
〈〈
HIN
〉〉

is a
ε-neighbourhood of the exact WCPG matrix for arbitrary ε > 0
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Truncation

∣∣∣∣∣mid

(

∞∑

k=0

∣∣∣CIAIkBI
∣∣∣ −→

−

N∑

k=0

∣∣∣CIAIkBI
∣∣∣

) ∣∣∣∣∣ ≤ ε1

Compute an approximate lower bound on truncation order N such that the
truncation error of the center matrix is smaller than ε1.

Lower bound on truncation order N

N ≥
⌈
log ε1

inf MI

log ρ(AI)

⌉
, with MI :=

n∑

i=1

∣∣RIi
∣∣

1−
∣∣λIi
∣∣

∣∣λIi
∣∣

ρ(AI)

where

(RIi )kl := (CIV I)ki (V I
−1

BI)il − i thresidue matrix

λI ,V I − enclosures for the eigenvalues and eigenvectors of matrix AI
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Computing the eigensystem of interval matrix

Eigenvalues of interval matrix

Compute enclosures λI such that ∀A ∈ AI ,λ(A) ∈ λI

Approach
Following the works of Xu and Rachid (1996) and Rohn(1998), use the
Generalized Gershgorin’s Circles theorem.

Eigenvectors of interval matrix

Given the enclosures on eigenvalues λI , compute enclosures V I such that
∀λ ∈ λI , ∀A ∈ AI if Aλ = AV , then V ∈ V I .

Approach
Use Rump’s theory of Verified Inclusions.
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Evaluating the truncated sum

Once the sum is truncated, we need to compute
N∑

k=0

∣∣∣CIAIkBI
∣∣∣.

Take into account the truncation error by adding it to the radii of the
computed interval WCPG

〈〈
ĤIN
〉〉

Naive powering a dense matrix AIk to large k yeilds wide intervals

=⇒ diagonalize the interval matrix using eigendecomposition ΛI ,V I

=⇒ now we compute
N∑

k=0

∣∣∣CIV IΛIkV I−1BI
∣∣∣

Adjust precision for each interval matrix multiplication, addition and
absolute value computation s.t. zero coefficients radii yeild

∣∣∣rad
(
〈〈H〉〉 −

〈〈
ĤIN
〉〉)∣∣∣ < ε
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Numerical Example

Random stable filter with 1 input, 1 output, 10 states.
Interval coefficients obtained via quantization to 16 bits (round up).
ε = 2−64

Spectral radius: [0.983967± 4.25e − 14]

Truncation order: N = 4847

Approach mid rad

WCPG original system 91.535729 2−64

WCPG quantized system 91.535743 2−64

Naive iWCPG 91.535730 4.750624× 101183

iWCPG quantized system 91.535729 1.568769
iWCPG zero radii 91.535729 5.568769× 10−22

Inclusion property ensured

Zero radii give ε-neighbourhood of the exact WCPG
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Conclusion and Perspectives

Conclusion
Applied traditional techniques for the eigendecomposition of an
interval matrix combined with multiple precision interval arithmetic.
Ensured the enclosure property
Ensure that with tightening the coefficients’ intervals the computed
result converges to the ε-neighbourhood of the exact one

Perspectives
Integrate our approach into the automatic filter generator to take into
account the quantization of coefficients.
Adapt the filter quality measures for the interval case (require interval
discrete Lyapunov equations solver)
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Thank you!
Questions?
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