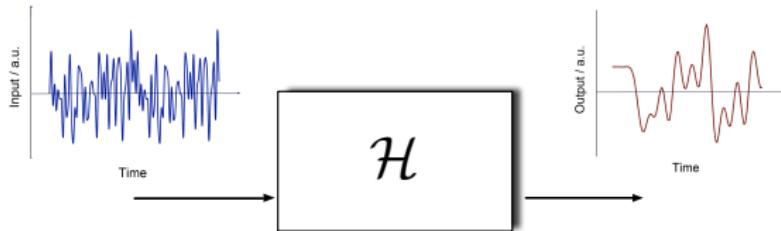


Computing the Worst-Case Peak Gain of Digital Filter in Interval Arithmetic

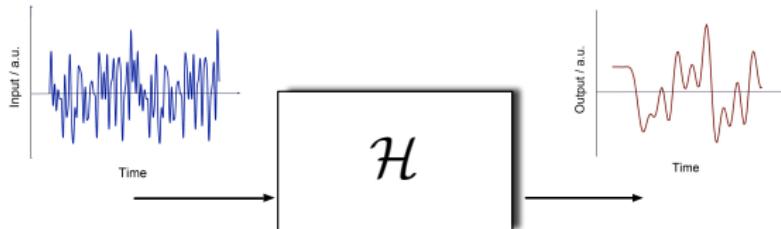
Anastasia Volkova, **Christoph Lauter**, Thibault Hilaire

SCAN 2016
September 28, 2016

Context: digital filters



Context: digital filters

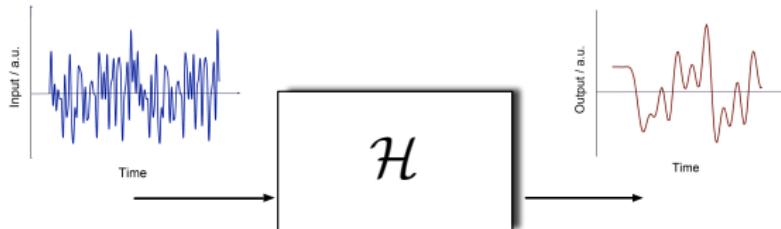


On the one hand

- LTI filter with Infinite Impulse Response
- Its transfer function:

$$H(z) = \frac{\sum_{i=0}^n b_i z^{-i}}{1 + \sum_{i=1}^n a_i z^{-i}}$$

Context: digital filters



On the one hand

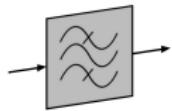
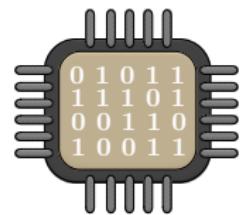
- LTI filter with Infinite Impulse Response
- Its transfer function:

On the other hand

- Hardware or Software target
- Implementation in Fixed-Point Arithmetic

$$H(z) = \frac{\sum_{i=0}^n b_i z^{-i}}{1 + \sum_{i=1}^n a_i z^{-i}}$$

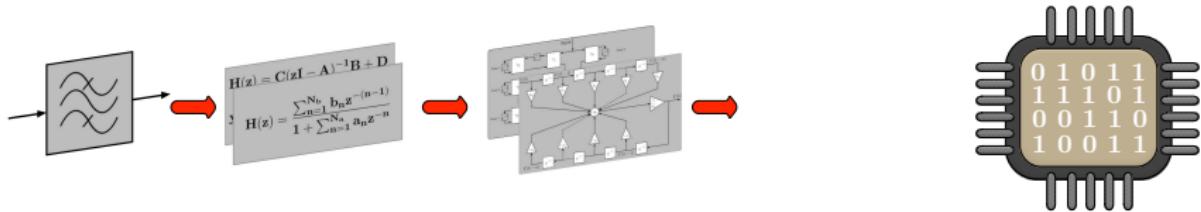
Context: implementation of LTI filters



Context: implementation of LTI filters

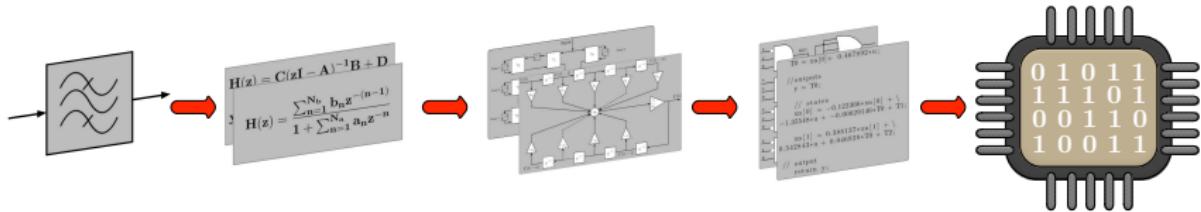
- Transfer function generation

Context: implementation of LTI filters

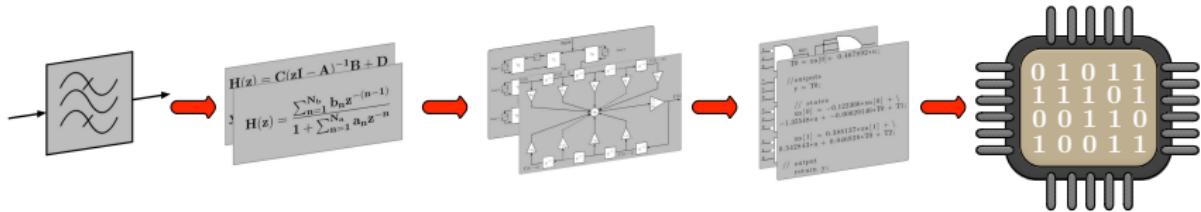


- Transfer function generation
- Algorithm choice: State-space, Direct Form I, Direct Form II, ...

Context: implementation of LTI filters



Context: implementation of LTI filters



- Transfer function generation
 - ! Coefficient quantization
- Algorithm choice: State-space, Direct Form I, Direct Form II, ...
 - ! Large variety of structures with no common quality criteria
- Software or Hardware implementation
 - ! Constraints: power consumption, area, error, speed, etc.
 - ! Computational errors due to finite-precision implementation

Filter-to-code generator

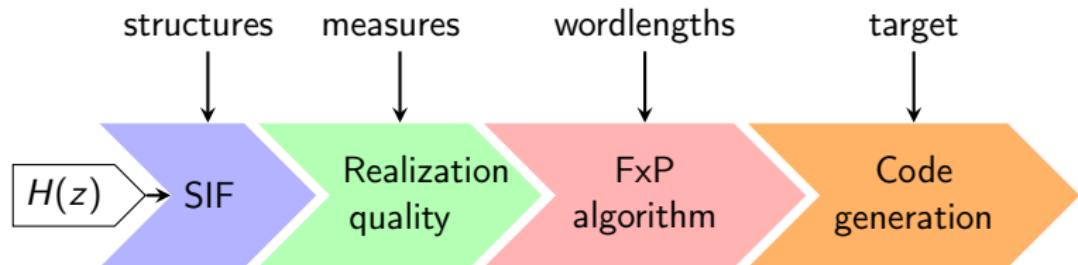


Figure: Automatic filter generator flow.

Filter-to-code generator

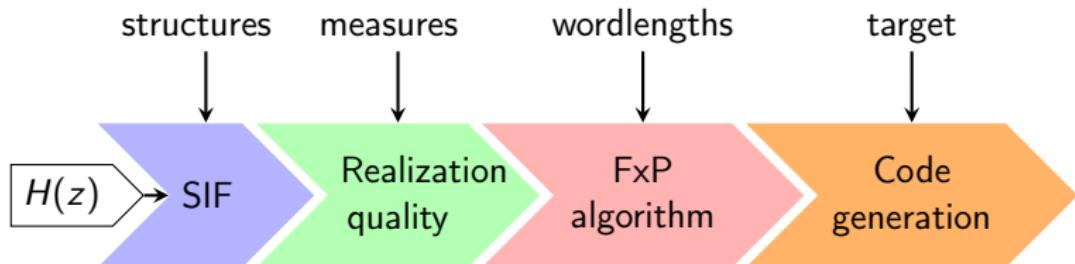


Figure: Automatic filter generator flow.

Stage 1: analytical filter realization representation

Stage 2: filter quality measures

Stage 3: reliable fixed-point algorithm (rigorous approach, computational errors taken into account)

Stage 4: Fixed-Point Code Generator

Filter-to-code generator

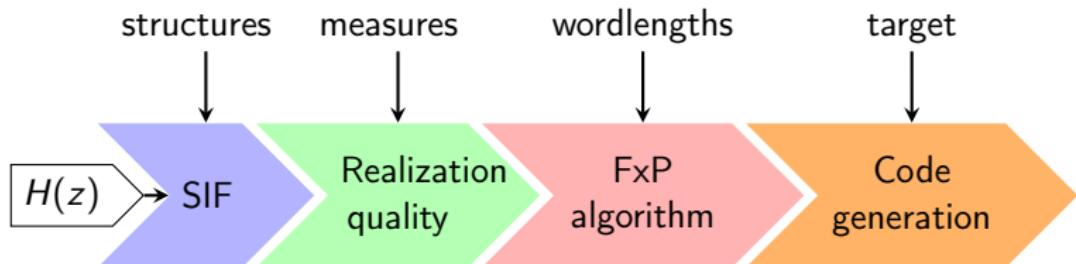


Figure: Automatic filter generator flow.

Stage 1: analytical filter realization representation

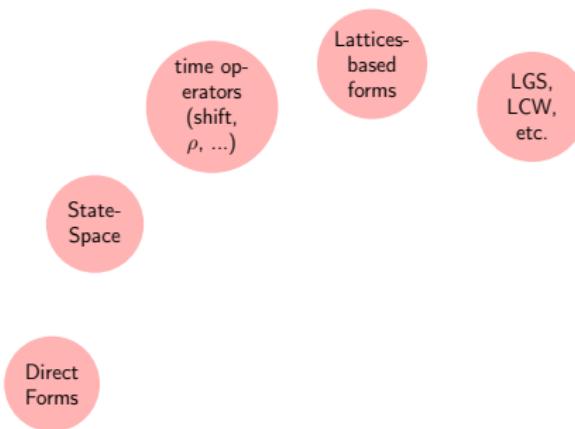
Stage 2: filter quality measures

Stage 3: reliable fixed-point algorithm (rigorous approach, computational errors taken into account)

Stage 4: Fixed-Point Code Generator

SIF and State-Space

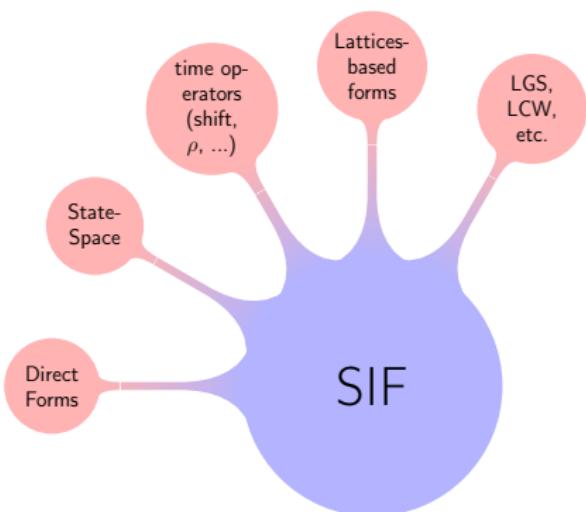
A linear signal processing or control algorithm can be implemented under various structures (algorithms).



SIF and State-Space

A linear signal processing or control algorithm can be implemented under various structures (algorithms).

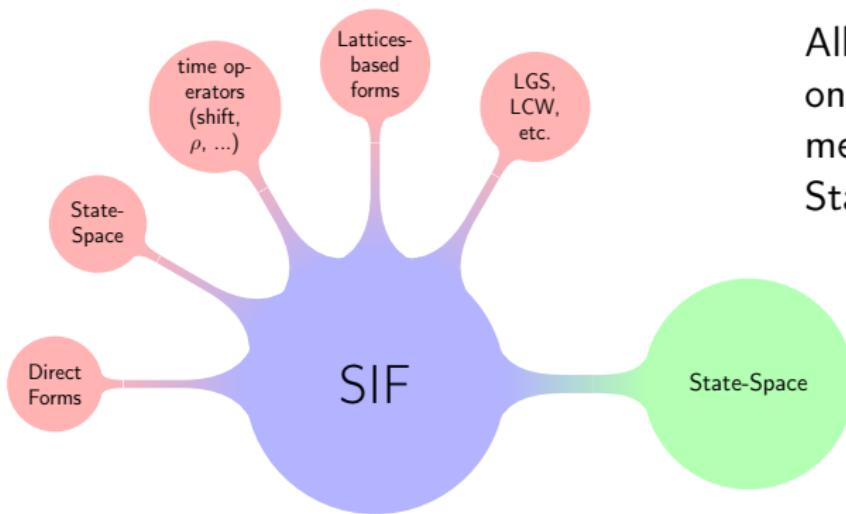
They can be all encompassed in a *matrix representation* called SIF (Specialized Implicit Framework).



SIF and State-Space

A linear signal processing or control algorithm can be implemented under various structures (algorithms).

They can be all encompassed in a *matrix representation* called SIF (Specialized Implicit Framework).



All our measures and analysis on SIF can be transformed on measures on different State-Spaces.

LTI filters

Let $\mathcal{H} := (\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ be a LTI filter in state-space representation:

$$\mathcal{H} \left\{ \begin{array}{rcl} \mathbf{x}(k+1) & = & \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) \\ \mathbf{y}(k) & = & \mathbf{C}\mathbf{x}(k) + \mathbf{D}\mathbf{u}(k) \end{array} \right.$$

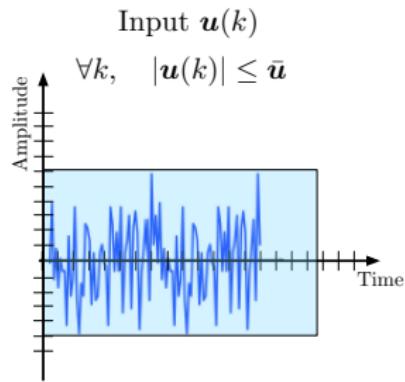
The filter \mathcal{H} is considered Bounded Input Bounded Output stable if

$$\rho(\mathbf{A}) < 1.$$

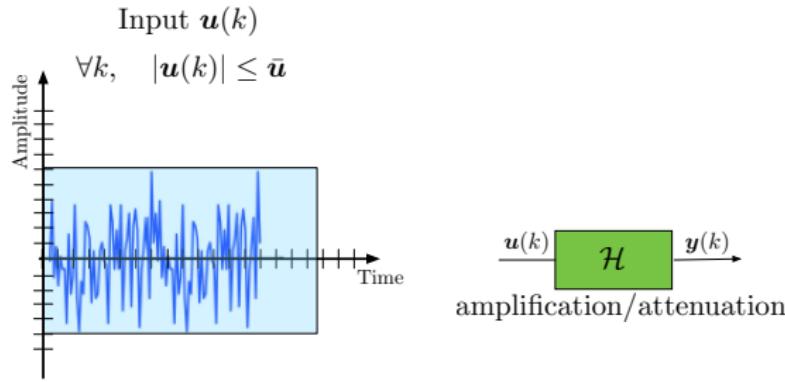
Reliable implementation:

- determine the output interval
- take into account the computational error propagation and determine the Fixed-Point implementation parameters

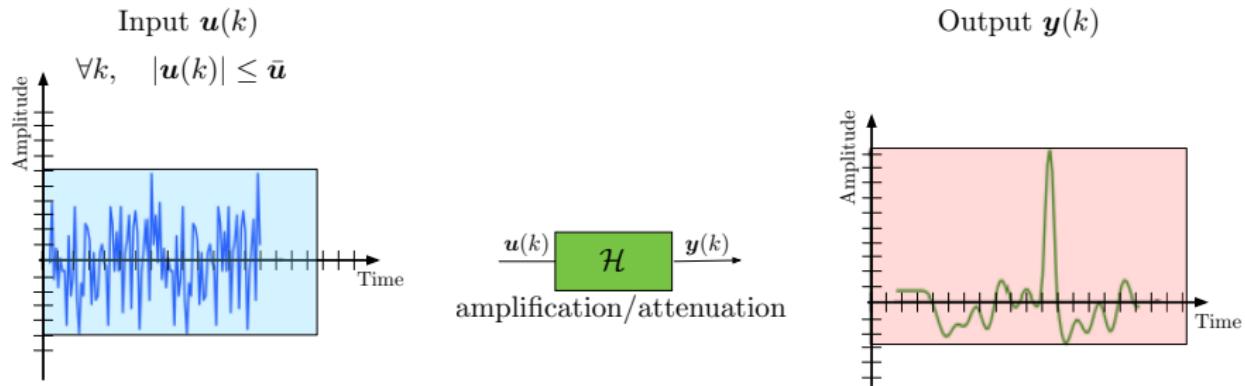
Basic brick: the Worst-Case Peak Gain theorem



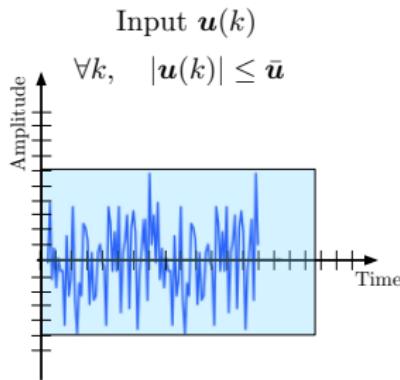
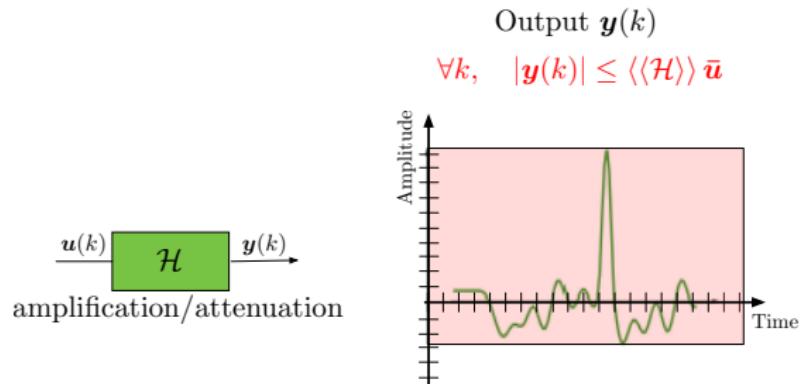
Basic brick: the Worst-Case Peak Gain theorem



Basic brick: the Worst-Case Peak Gain theorem



Basic brick: the Worst-Case Peak Gain theorem



Worst-Case Peak Gain

$$\langle\langle \mathcal{H} \rangle\rangle = |\mathbf{D}| + \sum_{k=0}^{\infty} |\mathbf{C} \mathbf{A}^k \mathbf{B}|$$

Computing the Worst-Case Peak Gain (WCPG)

When \mathbf{A} , \mathbf{B} , \mathbf{C} and \mathbf{D} are exact:

→ we compute the Worst-Case Peak Gain with arbitrary precision¹.

¹A.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision", ARITH22, 2015

Computing the Worst-Case Peak Gain (WCPG)

When \mathbf{A} , \mathbf{B} , \mathbf{C} and \mathbf{D} are exact:

→ we compute the Worst-Case Peak Gain with arbitrary precision¹.

Cases when \mathbf{A} , \mathbf{B} , \mathbf{C} and \mathbf{D} are not exact:

- coefficients are results of finite-precision computations
(e.g. quantization, SIF \leftrightarrow State-Space transformation etc.)

¹A.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision", ARITH22, 2015

Computing the Worst-Case Peak Gain (WCPG)

When \mathbf{A} , \mathbf{B} , \mathbf{C} and \mathbf{D} are exact:

→ we compute the Worst-Case Peak Gain with arbitrary precision¹.

Cases when \mathbf{A} , \mathbf{B} , \mathbf{C} and \mathbf{D} are not exact:

- coefficients are results of finite-precision computations
(e.g. quantization, SIF \leftrightarrow State-Space transformation etc.)

To take these properties into account we use Interval Arithmetic.

→ Need to compute the WCPG in interval arithmetic.

¹A.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision", ARITH22, 2015

Computing the Worst-Case Peak Gain (WCPG)

When $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} are exact:

→ we compute the Worst-Case Peak Gain with arbitrary precision¹.

Cases when $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} are not exact:

- coefficients are results of finite-precision computations
(e.g. quantization, SIF \leftrightarrow State-Space transformation etc.)

To take these properties into account we use Interval Arithmetic.

→ Need to compute the WCPG in interval arithmetic.

Notation: interval matrix $\mathbf{M}^{\mathcal{I}}$ is centered at $mid(\mathbf{M}^{\mathcal{I}})$ and has radius $rad(\mathbf{M}^{\mathcal{I}})$.

¹A.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision", ARITH22, 2015

Interval WCPG computation

Problem: compute the interval Worst-Case Peak Gain matrix

$$\langle\langle \mathcal{H}^{\mathcal{I}} \rangle\rangle = |\mathbf{D}^{\mathcal{I}}| + \sum_{k=0}^{\infty} \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right|.$$

Interval WCPG computation

Problem: compute the interval Worst-Case Peak Gain matrix

$$\langle\langle \mathcal{H}^{\mathcal{I}} \rangle\rangle = |\mathbf{D}^{\mathcal{I}}| + \sum_{k=0}^{\infty} \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right|.$$

Approach:

- Cannot sum infinitely \Rightarrow need to truncate the sum
- Evaluate the truncated sum $\langle\langle \mathcal{H}_N^{\mathcal{I}} \rangle\rangle$ using multiple precision interval arithmetic

Interval WCPG computation

Problem: compute the interval Worst-Case Peak Gain matrix

$$\langle\langle \mathcal{H}^{\mathcal{I}} \rangle\rangle = |\mathbf{D}^{\mathcal{I}}| + \sum_{k=0}^{\infty} \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right|.$$

Approach:

- Cannot sum infinitely \Rightarrow need to truncate the sum
- Evaluate the truncated sum $\langle\langle \mathcal{H}_N^{\mathcal{I}} \rangle\rangle$ using multiple precision interval arithmetic

Ensure:

- enclosure property: $\forall \langle\langle \mathcal{H} \rangle\rangle \in \langle\langle \mathcal{H}^{\mathcal{I}} \rangle\rangle \Rightarrow \langle\langle \mathcal{H} \rangle\rangle \in \langle\langle \mathcal{H}_N^{\mathcal{I}} \rangle\rangle$
- if coefficients' radii $\rightarrow 0$ and the precision $\rightarrow \infty$, then $\langle\langle \mathcal{H}_N^{\mathcal{I}} \rangle\rangle$ is a ε -neighbourhood of the exact WCPG matrix for arbitrary $\varepsilon > 0$

Truncation

$$\sum_{k=0}^{\infty} \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right| \rightarrow \sum_{k=0}^{\textcolor{red}{N}} \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right|$$

Truncation

$$\left| \text{mid} \left(\sum_{k=0}^{\infty} \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right| - \sum_{k=0}^{\textcolor{red}{N}} \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right| \right) \right| \leq \varepsilon_1$$

Compute an approximate lower bound on truncation order N such that the truncation error of the center matrix is smaller than ε_1 .

Lower bound on truncation order N

$$N \geq \left\lceil \frac{\log \frac{\varepsilon_1}{\inf \mathbf{M}^{\mathcal{I}}}}{\log \rho(\mathbf{A}^{\mathcal{I}})} \right\rceil, \quad \text{with } \mathbf{M}^{\mathcal{I}} := \sum_{i=1}^n \frac{|\mathbf{R}_i^{\mathcal{I}}|}{1 - |\lambda_i^{\mathcal{I}}|} \frac{|\lambda_i^{\mathcal{I}}|}{\rho(\mathbf{A}^{\mathcal{I}})}$$

where

$$(\mathbf{R}_i^{\mathcal{I}})_{kl} := (\mathbf{C}^{\mathcal{I}} \mathbf{V}^{\mathcal{I}})_{ki} (\mathbf{V}^{\mathcal{I}-1} \mathbf{B}^{\mathcal{I}})_{il} - i^{\text{th}} \text{residue matrix}$$

$\lambda^{\mathcal{I}}, \mathbf{V}^{\mathcal{I}}$ – enclosures for the eigenvalues and eigenvectors of matrix $\mathbf{A}^{\mathcal{I}}$

Computing the eigensystem of interval matrix

Eigenvalues of interval matrix

Compute enclosures $\lambda^{\mathcal{I}}$ such that $\forall \mathbf{A} \in \mathbf{A}^{\mathcal{I}}, \lambda(\mathbf{A}) \in \lambda^{\mathcal{I}}$

Approach

Following the works of Xu and Rachid (1996) and Rohn(1998), use the Generalized Gershgorin's Circles theorem.

Computing the eigensystem of interval matrix

Eigenvalues of interval matrix

Compute enclosures $\lambda^{\mathcal{I}}$ such that $\forall \mathbf{A} \in \mathbf{A}^{\mathcal{I}}, \lambda(\mathbf{A}) \in \lambda^{\mathcal{I}}$

Approach

Following the works of Xu and Rachid (1996) and Rohn(1998), use the Generalized Gershgorin's Circles theorem.

Eigenvectors of interval matrix

Given the enclosures on eigenvalues $\lambda^{\mathcal{I}}$, compute enclosures $\mathbf{V}^{\mathcal{I}}$ such that $\forall \lambda \in \lambda^{\mathcal{I}}, \forall \mathbf{A} \in \mathbf{A}^{\mathcal{I}}$ if $\mathbf{A}\lambda = \mathbf{A}\mathbf{V}$, then $\mathbf{V} \in \mathbf{V}^{\mathcal{I}}$.

Approach

Use Rump's theory of Verified Inclusions.

Evaluating the truncated sum

Once the sum is truncated, we need to compute $\sum_{k=0}^N \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right|$.

- Take into account the truncation error by adding it to the radii of the computed interval WCPG $\langle\langle \widehat{\mathcal{H}}_N^{\mathcal{I}} \rangle\rangle$

Evaluating the truncated sum

Once the sum is truncated, we need to compute $\sum_{k=0}^N \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right|$.

- Take into account the truncation error by adding it to the radii of the computed interval WCPG $\langle\langle \widehat{\mathcal{H}}_N^{\mathcal{I}} \rangle\rangle$
- Naive powering a dense matrix $\mathbf{A}^{\mathcal{I}^k}$ to large k yeilds wide intervals

Evaluating the truncated sum

Once the sum is truncated, we need to compute $\sum_{k=0}^N \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right|$.

- Take into account the truncation error by adding it to the radii of the computed interval WCPG $\langle\langle \widehat{\mathcal{H}}_N^{\mathcal{I}} \rangle\rangle$
- Naive powering a dense matrix $\mathbf{A}^{\mathcal{I}^k}$ to large k yeilds wide intervals
 \implies diagonalize the interval matrix using eigendecomposition $\mathbf{\Lambda}^{\mathcal{I}}, \mathbf{V}^{\mathcal{I}}$

Evaluating the truncated sum

Once the sum is truncated, we need to compute $\sum_{k=0}^N \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right|$.

- Take into account the truncation error by adding it to the radii of the computed interval WCPG $\left\langle \left\langle \widehat{\mathcal{H}}_N^{\mathcal{I}} \right\rangle \right\rangle$
- Naive powering a dense matrix $\mathbf{A}^{\mathcal{I}^k}$ to large k yeilds wide intervals
 \Rightarrow diagonalize the interval matrix using eigendecomposition $\mathbf{\Lambda}^{\mathcal{I}}, \mathbf{V}^{\mathcal{I}}$
 \Rightarrow now we compute $\sum_{k=0}^N \left| \mathbf{C}^{\mathcal{I}} \mathbf{V}^{\mathcal{I}} \mathbf{\Lambda}^{\mathcal{I}^k} \mathbf{V}^{\mathcal{I}^{-1}} \mathbf{B}^{\mathcal{I}} \right|$

Evaluating the truncated sum

Once the sum is truncated, we need to compute $\sum_{k=0}^N \left| \mathbf{C}^{\mathcal{I}} \mathbf{A}^{\mathcal{I}^k} \mathbf{B}^{\mathcal{I}} \right|$.

- Take into account the truncation error by adding it to the radii of the computed interval WCPG $\langle\langle \widehat{\mathcal{H}}_N^{\mathcal{I}} \rangle\rangle$
- Naive powering a dense matrix $\mathbf{A}^{\mathcal{I}^k}$ to large k yeilds wide intervals
 \Rightarrow diagonalize the interval matrix using eigendecomposition $\mathbf{\Lambda}^{\mathcal{I}}, \mathbf{V}^{\mathcal{I}}$
 \Rightarrow now we compute $\sum_{k=0}^N \left| \mathbf{C}^{\mathcal{I}} \mathbf{V}^{\mathcal{I}} \mathbf{\Lambda}^{\mathcal{I}^k} \mathbf{V}^{\mathcal{I}^{-1}} \mathbf{B}^{\mathcal{I}} \right|$
- Adjust precision for each interval matrix multiplication, addition and absolute value computation s.t. zero coefficients radii yeild

$$\left| \text{rad} \left(\langle\langle \mathcal{H} \rangle\rangle - \langle\langle \widehat{\mathcal{H}}_N^{\mathcal{I}} \rangle\rangle \right) \right| < \varepsilon$$

Numerical Example

Random stable filter with 1 input, 1 output, 10 states.

Interval coefficients obtained via quantization to 16 bits (round up).

$$\varepsilon = 2^{-64}$$

- Spectral radius: $[0.983967 \pm 4.25e-14]$
- Truncation order: $N = 4847$

Approach	mid	rad
WCPG original system	91.535729	2^{-64}
WCPG quantized system	91.535743	2^{-64}
Naive iWCPG	91.535730	$4.750624 \times 10^{1183}$
iWCPG quantized system	91.535729	1.568769
iWCPG zero radii	91.535729	5.568769×10^{-22}

- ✓ Inclusion property ensured
- ✓ Zero radii give ε -neighbourhood of the exact WCPG

Conclusion and Perspectives

Conclusion

- Applied traditional techniques for the eigendecomposition of an interval matrix combined with multiple precision interval arithmetic.
- Ensured the enclosure property
- Ensure that with tightening the coefficients' intervals the computed result converges to the ε -neighbourhood of the exact one

Perspectives

- Integrate our approach into the automatic filter generator to take into account the quantization of coefficients.
- Adapt the filter quality measures for the interval case (require interval discrete Lyapunov equations solver)

Thank you!
Questions?