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Context: digital filters
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Context: implementation of LTI filters

0 1 0 1 1
1 1 1 0 1
0 0 1 1 0
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Transfer function generation

� Coefficient quantization

Algorithm choice: State-space, Direct Form I, Direct Form II, . . .

� Large variety of structures with no common quality criteria

Software or Hardware implementation

� Constraints: power consumption, area, error, speed, etc.
� Computational errors due to finite-precision implementation
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Filter-to-code generator

H(z)
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algorithm
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generation

measures wordlengths target

Figure: Automatic Filter Generator Flow

Use unified analytical representation of linear data-flows
Can describe any analytical and graphical representation
Adopted numerous classical and developed new quality measures
Provide fully rigorous and reliable implementation
in Fixed-Point arithmetic
Generate C (for µCs and DSPs) and VHDL code (for ASICs and
FPGAs)
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Reliable implementation of digital filters
in Fixed-Point Arithmetic
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LTI filters

Let H := (A,B,C ,D) be a LTI filter:

H
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

The filter H is considered Bounded Input Bounded Output stable if

ρ(A) < 1
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Two’s complement Fixed-Point arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

y = −2mym +
m−1∑

i=`

2iyi

Wordlength: w
Most Significant Bit position: m
Least Significant Bit position: ` := m − w + 1

∀k , y(k) ∈ [−2m; 2m − 2m−w+1]
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y(k) ∈ R

wordlength w bits
minimal Fixed-Point Format (FPF) is the least m:
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Reliable Fixed-Point implementation

Input:
H = (A,B,C ,D)

bound on the input interval
wordlength constraints

Determine: the Fixed-Point Formats s.t.
the least MSBs
no overflows occur
 must take into account computational errors

How to proceed:
1. determine the output interval of all variables
2. analyze propagation of the error in filter implementation and

determine the FxPF
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Deducing the output interval1

1A.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple
Precision", ARITH22, 2015
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Basic brick: the Worst-Case Peak Gain theorem

Time

A
m

p
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e 8k, |u(k)|  ū

Input u(k)
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Input u(k)

A. Volkova Seminar at AriC team January 5, 2017 10 / 41



Basic brick: the Worst-Case Peak Gain theorem

Time

A
m

p
li
tu

d
e

Output y(k)

8k, |y(k)|  hhHii ū

H y(k)u(k)

amplification/attenuation

hhHii = |D| +
1P

k=0

|CAkB|

Worst-Case Peak Gain

Time
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Computing the Worst-Case Peak Gain

Problem: compute the Worst-Case Peak Gain with arbitrary precision.

〈〈H〉〉 = |D|+
∞∑

k=0

∣∣∣CAkB
∣∣∣

Cannot sum infinitely ⇒ need to truncate the sum
Once the sum is truncated, evaluate it in multiple precision
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Truncation

∣∣∣∣∣

∞∑

k=0

∣∣CAkB
∣∣ −→

−

N∑

k=0

∣∣CAkB
∣∣

∣∣∣∣∣ ≤ ε1

Compute an approximate lower bound on truncation order N such that the
truncation error is smaller than ε1.

Lower bound on truncation order N

N ≥
⌈
log ε1
‖M‖min

log ρ(A)

⌉
, with M :=

n∑

l=1

|R l |
1− |λl |

|λl |
ρ(A)

where

λ− eigenvalues of matrix A

R l − l thresidue matrix computed out of C ,B,λ
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Powering

(

N∑

k=0

∣∣CAkB
∣∣

−→−
N∑

k=0

∣∣CVT kV−1B
∣∣(≤ ε2

× = cancellation

× = less cancellation

A = XEX−1 V ≈ X and T ≈ E

T ≈ V−1 × A× V

Ak ≈ V × T k × V−1
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Powering

∣∣∣∣∣
N∑

k=0

∣∣CAkB
∣∣ −

N∑

k=0

∣∣CVT kV−1B
∣∣
∣∣∣∣∣ ≤ ε2

Given matrix V compute T such that the error of substitution of the product
VT kV−1 instead of Ak is less than ε2.
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Further steps

∣∣∣∣∣
N∑

k=0

∣∣CAkB
∣∣ −

N∑

k=0

∣∣CVT kV−1B
∣∣
∣∣∣∣∣ ≤ ε2

Apply the same approach for the other steps:

∣∣∣∣
N∑

k=0

∣∣CVT kV−1B
∣∣−

N∑
k=0

∣∣C ′T kB ′
∣∣
∣∣∣∣ ≤ ε3

∣∣∣
∑N

k=0

∣∣C ′T kB ′
∣∣− ∑N

k=0 |C ′PkB ′|
∣∣∣ ≤ ε4

∣∣∣
∑N

k=0 |C ′PkB ′| −
∑N

k=0 |Lk |
∣∣∣ ≤ ε5

∣∣∣
∑N

k=0 |Lk | − SN

∣∣∣ ≤ ε6
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Basic bricks

Requirement:
Provide matrix operations which satisfy an element-by-element absolute
error bound δ given in the argument.

Problem:
In fixed-precision FP arithmetic such absolute bound is not generally
possible.

Solution:
Use multiple-precision FP arithmetic and dynamically adapt precision of the
result variables.
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What if coefficients are not exact?

Cases when A,B,C and D are not exact:
coefficients are results of finite-precision computations
(e.g. quantization, SIF ↔ State-Space transformation etc.)

To take these properties into account we use Interval Arithmetic.
−→ Need to compute the WCPG in interval arithmetic.

Notation: interval matrix MI is centered at mid(MI) and
has radius rad(MI).
We suppose all interval arithmetic to be in multiple-precision.
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Interval WCPG computation

Problem: compute the interval Worst-Case Peak Gain matrix

〈〈
HI
〉〉

=
∣∣DI

∣∣+
∞∑

k=0

∣∣∣CIAIkBI
∣∣∣ .

Ensure:
enclosure property: ∀H ∈ HI =⇒ 〈〈H〉〉 ∈

〈〈
HIN
〉〉

if coefficients’ radii → 0 and the precision →∞, then
〈〈
HIN
〉〉

is a
ε-neighbourhood of the exact WCPG matrix for arbitrary ε > 0
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Computing the eigensystem of interval matrix

Eigenvalues of interval matrix

Compute enclosures λI such that ∀A ∈ AI ,λ(A) ∈ λI

Approach
Following the works of Xu and Rachid (1996) and Rohn(1998), use the
Generalized Gershgorin’s Circles theorem.

Eigenvectors of interval matrix

Given the enclosures on eigenvalues λI , compute enclosures V I such that
∀λ ∈ λI , ∀A ∈ AI if AV = λV , then V ∈ V I .

Approach
Use Rump’s theory of Verified Inclusions.
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Determining the Fixed-Point Formats2

2A.V. et al., "Determining Fixed-Point Formats for a Digital Filter Implementation
using the Worst-Case Peak Gain Measure", Asilomar 49, 2015
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Determining the Fixed-Point Formats

H
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

We know that if ∀k, |u i (k)| ≤ ū i , then

∀k, |y i (k)| ≤ (〈〈H〉〉 ū)i .

We need to find the least integer my such that

∀k , |y i (k)| ≤ 2myi − 2myi
−w yi

+1.

It easy to show that my can be computed with

myi =
⌈
log2 (〈〈H〉〉 ū)i − log2

(
1− 21−w yi

)⌉
.

Control the accuracy of the WCPG such that 0 ≤ m̂yi −myi ≤ 1
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Open question: the off-by-one problem

m̂yi = dme
Problem: interval m contains a power of 2.

Technique: Ziv’s strategy to reduce interval

2p 2p+1

Dilemma:
propagation of computational errors
or overestimation in linear filter decomposition?

Possible approach:
Assume the format m̂ = p

Does there exist a reachable x♦(k) s.t. y♦(k) overflows ?
Technique: SMT? integer linear programming? lattice algorithms?
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Taking the quantization errors into account

The exact filter H is:

H♦
{

x♦(k + 1) =

♦mx (

Ax♦(k) + Bu(k)

)

+ εx(k)
y

♦

(k) =

♦my (

Cx

♦

(k) + Du(k)

) + εy (k)

H

H�

y⌃(k)

u(k) y(k)

�(k)

✓
"x(k)
"y(k)

◆
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Taking the quantization errors into account

The actually implemented filter H♦ is:
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Algorithm

Step 1: Determine the initial guess MSBs my for the exact filter H
Step 2: Compute the error-filter H∆, induced by the format my and

deduce the MSBs m♦ζ
Step 3: If m♦yi == myi then return m♦yi

otherwise myi ← myi + 1 and go to Step 2.
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Numerical example

Example:
Random filter with 3 states, 1 input, 1 output
ū = 5.125, wordlengths set to 7 bits

states output
x1(k) x2(k) x3(k) y(k)

Step 1 6 7 5 6
Step 2 6 7 6 6
Step 3 6 7 6 6

Table: Evolution of the MSB positions
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Numerical examples

Time

A
m

p
li
tu

d
e

ȳ
y⌃(k)

y(k)

ȳ⌃

Figure: The exact and quantized outputs of the example.
Quantized output does not pass over to the next binade.
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Numerical examples

Time

A
m

p
li
tu

d
e

x̄3

x⌃
3 (k)

x3(k)

x̄⌃
3

Figure: The exact and quantized third state of the example.
Quantized state passes over to the next binade.
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Work in progress:
"Verification of digital implemented filters against

specification."

A. Volkova Seminar at AriC team January 5, 2017 27 / 41



Filter specifications

The filters are designed from transfer function specifications in frequency
domain:

β ≤
∣∣H(e iω)

∣∣ ≤ β, ∀ω ∈ [ω1, ω2]

Example: lowpass filter

|H(ej!)|

!

�s

!p !s

1

1� �p

1 + �p

⇡

passband stopband

{
1− δp ≤

∣∣H(e iω)
∣∣ ≤ 1 + δp ∀ω ∈ [0, ωp] (passband)∣∣H(e iω)
∣∣ ≤ δs ∀ω ∈ [ωs , π] (stopband)
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Reformulating the problem

Need to show that ∀z ∈ {e jω|ω ∈ Ω ⊂ [0, π]}

β ≤ |H(z)| ≤ β

We have that

|H(z)|2 =
|b(z)|2

|a(z)|2
=

b(z)b(z)

a(z)a(z)
=

b(z)b(1z )

a(z)a(1z )
=:

P(z)

Q(z)
,

where P(z) and Q(z) polynomials with real coefficients.
Therefore, we need to show:

β′ ≤ P(z)

Q(z)
≤ β′

We use the Sollya tool to prove it.
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Basic brick: verifying the bounds of a rational function

�̄

�

!
[ ] [ ] [ ][ ]

!̃1 !̃2 !̃3 !̃4

��H(ej!)
��

Figure: If a specification is not satisfied, our algorithm returns the problematic
frequencies as small intervals ω̃i and maximum overflows within those frequencies.
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Verifying a LTI filter implementation

Given a filter implementation compute the corresponding transfer function.

Transfer function of a single-input single-output state-space system:

H(z) = c(zI − A)−1b + d .

Using the eigendecomposition A = VEV−1:

H(z) =
P(z)

Q(z)
+ d

P(z) =
n∑

i=1

(cV )i (V−1b)i
∏

j 6=i

(z − λj)

Q(z) =
n∏

j=1

(z − λj)

We can compute an approximation Ĥ(z) in Multiple Precision arithmetic.
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Verifying a LTI filter implementation

Bounding the approximation error:

dSS ddSS �dSS

H bH �H

Figure: In red: inexact transformation. In green: exact transformation.

Lemma
Given a discrete state-space system, the error of a multiple precision
approximation Ĥ(z) on its transfer function is bounded by:

∣∣∣H(z)− Ĥ(z)
∣∣∣ ≤ Θ,

where Θ = 〈〈∆dSS〉〉+ ε is the Worst-Case Peak Gain of the system ∆dSS
computed with arbitrary small absolute error bounded by the ε > 0.
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Verifying a LTI filter implementation

�̄

�

|H(ej!)|

!

�̄ �⇥

� + ⇥

Lemma

If the approximation Ĥ(z) satisfies

β + Θ ≤
∣∣∣Ĥ(e iω)

∣∣∣ ≤ β −Θ, ∀ω ∈ Ω (1)

Then the exact transfer function H(z) verifies the initial specifications

β ≤
∣∣H(e iω)

∣∣ ≤ β, ∀ω ∈ Ω (2)
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Numerical results: comparing filter design tools

Butterworth Chebyshev Elliptic

lowpass
MATLAB 1.29e-17 7.93e-17 X
SciPy 2.14e-15 4.48e-2 4.48e-2

highpass
MATLAB 2.77e-16 6.94e-17 4.48e-2
SciPy 3.02e-15 2.29e-16 4.48e-2

bandpass
MATLAB 3.04e-17 X X
SciPy X 4.48e-2 4.48e-2

bandstop
MATLAB 4.59e-16 3.09e-15 X
SciPy X 6.36e-15 7.02e-6

Table: Quality of the filters designd with MATLAB vs. SciPy for some simple
filters. For example, a lowpass filter here has δp = 10−

1
20 , δs = 10−1, ωp = 0.4π,

ωs = 0.5π

A. Volkova Seminar at AriC team January 5, 2017 34 / 41



Numerical results: comparing filter structures

filter Butterworth Chebyshev
wordlength 32 16 8 32 16 8

DFIIt
margin X X 1.17e-2 1.97e-10 7.03e-6 7.42e-3
time 12s 15s 1min17s 1min22s 35s 18s

ρDFIIt
margin X 6.78e-2 7 1.21e-9 4.72e-4 8.35e-2
time 13s 3min17s unstable 1min26s 1min02s 17s

SS
margin X 9.11e-7 9.64e-3 2.06e-10 7.64e-6 2.23e-3
time 15s 2min4s 1min01s 23s 49s 18s

Table: Filter structures for a lowpass MATLAB-designed filter.
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Work in progress:
"Code generation for FPGAs"

with Matei Istoan and Florent de Dinechin
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Binding with FloPoCo

FloPoCo SIF
synthesis of arithmetic units + unifying representation =⇒ FPGA

(i.e. Sum-of-Products) (a bunch of Sum-of-Products ) implementation

FloPoCo: requires the the desired Fixed-Point Format of the output of a
Sum-of-Product.

SIF: we deduce a lower bound on the error of computation of each
Sum-of-Product s.t. the error-bound on the filter’s output is respected.

Naive approach: the error-budget is distrubuted equally

We can do better
Take into account different impact of different Sums-of-Products.
BUT need to solve non-linear optimization problem
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Conclusion

Proposed a new completely rigorous approach for the Fixed-Point
implementation of linear digital filters
Provided reliable evaluation of the WCPG measure
Applied the WCPG measure to determine the FxPF that guarantee
that overflow occurs
Proposed a new approach for the accurate computation of the transfer
function of an implemented filter
Proposed a rigorous approach on the verification of a LTI filter
implementation against its specification
Binding with FloPoCo gives possibility to fairly compare different filter
realizations
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Perspectives

Filter design and implementation:
Plug all the stages of the generator into optimization routines
Fairly compare finite precision implementation under various
constraints
Analysis of (short) floating-point implementations

From computer arithmetic point of view:
Eigendecomposition with a priori absolute error bound
Off-by-one problem
Optimize the quantization of filter coefficients using our specification
verification algorithm
Basic bricks multiple precision algorithms (transfer function, Lyapunov
equations,...)
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Future plans...

Now

T 

T+1 year 

T+2 years 

T+3 years 

Off-by-One problem
Reliable computation of poles

Minimax for digital filter design
 MP basic bricks for reliable filter design

…

Complete reliable digital filter design tool
…

Thesis defense

hardware

design

signal
processing

collaboration

with

and

teams
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Thank you!
Questions?
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L2-norm evaluation

Another related problem is the reliable evaluation of the L2-norm.
If H is a transfer function, then its L2-norm is defined by

‖H‖2 ,
√

1
2π

∫ 2π

0
‖H(e jω)‖2F dω

Parseval’s theorem gives another expression when H is described with
state-space matrices A,B,C ,D:

‖H‖2 =
√
tr(CW cC> + DD>)

=
√
tr(B>W oB + D>D)

where W c and W o are the controllability and observability Gramians of
the system.
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Gramians

W c is the controllability Gramian of the system.

W c ,
∞∑

k=0

(AkB)(AkB)>

W c is the solution of the discrete-time Lyapunov equation

W c = AW cA> + BB>

W o is the observability Gramian of the system.

W o ,
∞∑

k=0

(CAk)>(CAk)

W o is the solution of the discrete-time Lyapunov equation

W o = A>W oA + C>C
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Computation of the Gramians

The Gramians are usually computed by solving the discrete-time Lyapunov
equation X = AXA> + Q
The following methods can be used:

solve (I − A⊗ A)x = q
where x = Vec(X ) and q = Vec(Q)
→ numerically inefficient

use infinite sum
∞∑

k=0

AkQAk>

→ may required a lot of computation
use Hammarling’s method, based on Schur decomposition of matrix A
→ efficient, but required a deep analysis of the computational errors
of the algorithm

see “Computational methods for linear matrix equations”, V. Simoncini
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Reliable computation of the L2-norm

Questions
How to have a reliable evaluation of the L2-norm in multiple precision
How to proceed when A, B, C and D are interval matrices (small
radii, containing previously computed errors)
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Step 1. Bound on truncation error

Truncation error is the tail of the infinite sum:
∑

k>N

∣∣∣CAkB
∣∣∣

Suppose A = XEX−1, where E = diag(λ1, . . . , λn) is the eigenvalue
matrix and X is the eigenvector matrix. Then,

CAkB = CXE kX−1B =
n∑

l=1

R lλ
k
l

Bound on truncation error

M :=
n∑

l=1

|R l |
1− |λl |

|λl |
ρ(A)
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Step 1. Bound on truncation order

Lower bound on truncation order

N ≥
⌈

log ε1
m

log ρ(A)

⌉

M :=
n∑

l=1

|R l |
1− |λl |

|λl |
ρ(A)

where m is defined as m := min
i ,j
|M i ,j |.

Reliable evaluation
Interval Arithmetic and Rump’s Theory of Verified Inclusions are used to
determine a rigorous bound of N.
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Step 2. "Diagonalization" of matrix A

T := V−1AV −∆2

V is some approximation on X
∆2 represents the element-by-element errors due to the two matrix
multiplications and the inversion of matrix V
T diagonal in dominant with very small other elements
‖T‖2 ≤ 1
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Step 2. "Diagonalization" of matrix A

T := V−1AV −∆2

Ak = V (T + ∆2)kV−1

The error of substitution of A by VTV−1:

√
n(N + 1)(N + 2) ‖∆2‖F ‖CV ‖F

∥∥V−1B
∥∥
F

!
≤ ε2
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The error of substitution of A by VTV−1:

√
n(N + 1)(N + 2) ‖∆2‖F ‖CV ‖F

∥∥V−1B
∥∥
F

!
≤ ε2

A condition on the error-matrix ∆2:

‖∆2‖F ≤
1√

n(N + 1)(N + 2)

ε2
‖CV ‖F ‖V−1B‖F
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Step 3. Computing products C ′ and B ′

C ′ := CV + ∆3C

B′ := V−1B + ∆3B

where ∆3C
∈ Cp×n and ∆3B

∈ Cn×q are error-matrices.

Bound on the multiplication errors ∆3C and ∆3B :

‖∆3C
‖F ≤

1
3
√
n
· 1
N + 1

ε3
‖C ′‖F

‖∆3B
‖F ≤

1
3
√
n
· 1
N + 1

ε3
‖B′‖F

.
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Step 4. Powering T

Pk := T k −∆4k

∆4k ∈ Cn×n error-matrix on matrix powers, including error propagation
from the first to the last power.

Pk = TPk−1 + Γk ,

where Γk ∈ Cn×n is the error-matrix on the error of the matrix
multiplication at step k .

Bound on the error-matrix Γk

‖Γk‖F ≤
1√
n
· 1
N − 1

· 1
N + 1

· ε4
‖C ′‖F ‖B ′‖F
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Step 5. Computing Lk

Lk := C ′PkB ′ + ∆5k ,

where ∆5k ∈ Cp×q is the matrix of element-by-element errors for the two
matrix multiplications.

Bound on the error-matrix ∆5k

|∆5k | ≤
1

N + 1
· ε5.
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Step 6. Summation

SN = |D|+
N∑

l=0

|Ll |+ ∆6,

where the error-matrix ∆6 ∈ Cp×q represents the error of N + 1 absolute
value accumulations.

Bound on the error matrix ∆6k

∆6k ≤
1
N
ε6, k = 1 . . .N
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