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Context: digital filters
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On the one hand On the other hand
o LTI filter with Infinite @ Hardware or Software target
Impulse Response @ Implementation in Fixed- or
@ lIts transfer function: Floating-Point Arithmetic
n .
Z b,'Z_'
H(z) = #
1+ Z 3,'2_"
i=1
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Context: implementation of LTI filters
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Context: implementation of LTI filters
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@ Transfer function generation
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Context: implementation of LTI filters
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@ Transfer function generation
B5" Coefficient quantization

@ Algorithm choice: State-space, Direct Form |, Direct Form II,
IE" | arge variety of structures with no common quality criteria

@ Software or Hardware implementation
BZ” Constraints: power consumption, area, error, speed, etc.
I¥" Computational errors due to finite-precision implementation
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Filter-to-code generator

measures wordlengths target
Simulink l l l
o
S SIF Realization FxP Code
quality algorithm generation
TF to
H(z) SIF

Figure: Automatic Filter Generator Flow

Use unified analytical representation of linear data-flows
Can describe any analytical and graphical representation
Adopted numerous classical and developed new quality measures

Provide fully rigorous and reliable implementation

in Fixed-Point arithmetic

Generate C (for Cs and DSPs) and VHDL code (for ASICs and
FPGAs)
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Use unified analytical representation of linear data-flows
Can describe any analytical and graphical representation
Adopted numerous classical and developed new quality measures

Provide fully rigorous and reliable implementation

in Fixed-Point arithmetic

Generate C (for uCs and DSPs) and VHDL code (for ASICs and
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Reliable implementation of digital filters
in Fixed-Point Arithmetic
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LTI filters

Let H := (A, B, C, D) be a LTI filter:

2 { x(k+1) = Ax(k)+ Bu(k)
y(k) = Cx(k)+ Du(k)

The filter H is considered Bounded Input Bounded Output stable if

p(A) <1
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Two's complement Fixed-Point arithmetic

_om 2m—1 20 2—1 2[

| m+1 —l
w

m—1
y=-2"ym+ > 2y
i=£

o Wordlength: w
@ Most Significant Bit position: m
@ Least Significant Bit position: £:=m—w +1

A. Volkova Seminar at AriC team January 5, 2017 7/ 41



Two's complement Fixed-Point arithmetic

m—1
y=-2"ym+ > 2y
i=t
e y(k) eR
@ wordlength w bits

e minimal Fixed-Point Format (FPF) is the least m:

Vk, y(k)€[-2™2m —2m~wHl]
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Reliable Fixed-Point implementation

Input:
e H=(AB,C,D)
@ bound on the input interval

e wordlength constraints

Determine: the Fixed-Point Formats s.t.
@ the least MSBs

@ no overflows occur

~» must take into account computational errors
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Reliable Fixed-Point implementation

Input:
e H=(AB,C,D)
@ bound on the input interval

e wordlength constraints

Determine: the Fixed-Point Formats s.t.
@ the least MSBs
@ no overflows occur

~» must take into account computational errors

How to proceed:

1. determine the output interval of all variables

2. analyze propagation of the error in filter implementation and
determine the FxPF
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Deducing the output interval®

1A.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple
Precision", ARITH22, 2015
Seminar at AriC team January 5, 2017 9 /41



Basic brick: the Worst-Case Peak Gain theorem

Input u(k)
vk, |u(k)| <u

Amplitude

Time
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Basic brick: the Worst-Case Peak Gain theorem

Input w(k)
vk, |u(k)| <u

Amplitude

Time
amplification/attenuation
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Basic brick: the Worst-Case Peak Gain theorem

Output y(k)

Amplitude

Amplitude

Ly

Time

amplification/attenuation

ANV WV ] Time
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Basic brick: the Worst-Case Peak Gain theorem

Output y(k)
vk, ly(k)| < ((H)u

Amplitude

Amplitude

Ly

Time

amplification/attenuation

B A NEET

Worst-Case Peak Gain
((H)) = D] + kX_IO |CA*B|
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Computing the Worst-Case Peak Gain

Problem: compute the Worst-Case Peak Gain with arbitrary precision.

(H)) = |D|+§:‘CA"B‘

k=0

@ Cannot sum infinitely = need to truncate the sum

@ Once the sum is truncated, evaluate it in multiple precision
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Truncation

00 N
> |cA*B| — > |CA*B|
k=0 k=0
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Truncation

00 N
Y |cA*B| - Y |CAB|| <&
k=0

Compute an approximate lower bound on truncation order N such that the
truncation error is smaller than &;.

Lower bound on truncation order N

log

L LR
> | ———=2 |, with M:=

{ log p(A) -‘ Zl—\)\/W(A)

where

A — eigenvalues of matrix A

R, — *"residue matrix computed out of C, B, A

A. Volkova
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Powering

N

> |cAkB|

k=0
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Powering

N

S lcas

k=0

cancellation
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Powering

N

S lcas

k=0

x : = cancellation
\ X x‘*\ = less cancellation
N
A= XEX1 Va~Xand TR E
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Powering

N
> |cAkB|
k=0
X = cancellation
X ‘%‘% = \ less cancellation
%@3
A= XEX1 Va~Xand TR E

l

A=V xTkxv?
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Powering

N N
d|ca'B| - Y |cvTiV B[] <«

k=0 k=0

Given matrix V compute T such that the error of substitution of the product
VT V! instead of A is less than e.
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Further steps

N N
dlcaB| - M |cvTiVIIB|| <«
k=0 k=0

Apply the same approach for the other steps:
N N
> |CVTHV 1B~ 3 |C/T*B|| < es
k=0 k=0

SE|CTHB| S ICPB| < e

| S lCPB = T ILi| < e

| Sioltd = Su|<es
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Basic bricks

Requirement:

Provide matrix operations which satisfy an element-by-element absolute
error bound ¢ given in the argument.
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Basic bricks

Requirement:

Provide matrix operations which satisfy an element-by-element absolute
error bound ¢ given in the argument.

Problem:
In fixed-precision FP arithmetic such absolute bound is not generally
possible.

| A\

Solution:
Use multiple-precision FP arithmetic and dynamically adapt precision of the
result variables.

V.

A. Volkova Seminar at AriC team January 5, 2017 15 / 41



What if coefficients are not exact?

Cases when A, B, C and D are not exact:

@ coefficients are results of finite-precision computations
(e.g. quantization, SIF <> State-Space transformation etc.)
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What if coefficients are not exact?

Cases when A, B, C and D are not exact:

@ coefficients are results of finite-precision computations
(e.g. quantization, SIF <> State-Space transformation etc.)

To take these properties into account we use Interval Arithmetic.
— Need to compute the WCPG in interval arithmetic.

Notation: interval matrix M7 is centered at mid(M%) and
has radius rad(M?).

We suppose all interval arithmetic to be in multiple-precision.
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Interval WCPG computation

Problem: compute the interval Worst-Case Peak Gain matrix
<<’HI>> _ ‘DZ| i Z )CIAIkBZ‘ .
k=0

Ensure:
o enclosure property: VH € HT = ((H)) € ((HK))

o if coefficients’ radii — 0 and the precision — oo, then ({#H7},)) is a
e-neighbourhood of the exact WCPG matrix for arbitrary ¢ > 0
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Computing the eigensystem of interval matrix

Eigenvalues of interval matrix
Compute enclosures A% such that VA € AT, A(A) € AT

| A\

Approach

Following the works of Xu and Rachid (1996) and Rohn(1998), use the
Generalized Gershgorin's Circles theorem.

\
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Computing the eigensystem of interval matrix

Eigenvalues of interval matrix

Compute enclosures A7 such that VA € AT A\(A) € AT

| \

Approach

Following the works of Xu and Rachid (1996) and Rohn(1998), use the
Generalized Gershgorin's Circles theorem.

\

Eigenvectors of interval matrix

Given the enclosures on eigenvalues A%, compute enclosures V7 such that
VYA € AL,VA € AT if AV = AV, then V € VT,

Approach

Use Rump’s theory of Verified Inclusions.
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Determining the Fixed-Point Formats?

2A.V. et al., "Determining Fixed-Point Formats for a Digital Filter Implementation
using the Worst-Case Peak Gain Measure", Asilomar 49, 2015
Seminar at AriC team January 5, 2017 19 / 41



Determining the Fixed-Point Formats

y { x(k+1) = Ax(k)+ Bu(k)
y(k) = Cx(k)+ Du(k)

We know that if Vk, |u;(k)| < @;, then
vk, lyi(k)| < (((#)) @); .
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Determining the Fixed-Point Formats

We know that if Vk, |u;(k)| < @;, then
vk, lyi(k)| < (((#)) @); .

We need to find the least integer m,, such that
Wk, yi(k)| < 2 — 2my Wyt
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Determining the Fixed-Point Formats

We know that if Vk, |u;(k)| < @;, then
vk, lyi(k)| < (((#)) @); .

We need to find the least integer m,, such that
Wk, yi(k)| < 2 — 2my Wyt

It easy to show that m, can be computed with

my, = [ log, (((H)) @); — log, (1 — 21_Wy"ﬂ .
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Determining the Fixed-Point Formats

We know that if Vk, |u;(k)| < @;, then

vk, lyi(k)| < (((H)) @); .
We need to find the least integer m,, such that

k. lyi(K)| < 2mn — 2my Wit

It easy to show that m, can be computed with

my, = [ log, (((H)) @); — log, (1 — 21_Wy"ﬂ .

Control the accuracy of the WCPG such that 0 < m,, —m,, <1 J
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Open question: the off-by-one problem

my, = [u] il op+l

Problem: interval m contains a power of 2.
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Open question: the off-by-one problem

my, = [u] 9P op+1

Problem: interval m contains a power of 2.
Technique: Ziv's strategy to reduce interval - —F——

Dilemma:

@ propagation of computational errors

@ or overestimation in linear filter decomposition?
Possible approach:

@ Assume the format m = p

o Does there exist a reachable x°(k) s.t. y°(k) overflows ?
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Open question: the off-by-one problem

m,, = [m] opP op+1

Problem: interval m contains a power of 2.
Technique: Ziv's strategy to reduce interval - —F——

Dilemma:

@ propagation of computational errors

@ or overestimation in linear filter decomposition?
Possible approach:

@ Assume the format m = p

o Does there exist a reachable x°(k) s.t. y°(k) overflows ?
Technique: SMT? integer linear programming? lattice algorithms?
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Taking the quantization errors into account

The exact filter H is:

7-[ { x (k+1) = Ax (k) + Bu(k)
y (k) = Cx (k) + Du(k)
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Taking the quantization errors into account

The actually implemented filter H? is:

20 { xU(k+1) = O (Ax(K) + Bu(k))
yO(k) = Oum (Cx°(k) + Du(k))

where O, is some operator ensuring faithful rounding:

|Om(x) — x| < 2m=w+t,
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Taking the quantization errors into account

The actually implemented filter H? is:

240 xV(k+1) = AxO(k) + Bu(k) + e(k)
{ yo(k) = Cx"(k) + Du(k) +e,(k)

with

|€X(k)| < 2mx—Wx+1 and |€y(k)| < 2my—wy+1.
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Taking the quantization errors into account

The actually implemented filter H? is:

240 xV(k+1) = AxO(k) + Bu(k) + e(k)
{ yo(k) = Cx"(k) + Du(k) +e,(k)

with

|€X(k)| < 2mx—Wx+1 and |€y(k)| < 2my—wy+1.

u(k) TR0 u(k) % y(k)
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Algorithm
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Algorithm

Step 1: Determine the initial guess MSBs m,, for the exact filter H
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Algorithm

u(k) H
My, My
x k

C&c;)_ Ha

Step 1: Determine the initial guess MSBs m,, for the exact filter H

Step 2: Compute the error-filter Ha, induced by the format m,, and
deduce the MSBs mg
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Algorithm

o

Step 1: Determine the initial guess MSBs m,, for the exact filter H
Step 2: Compute the error-filter Ha, induced by the format m,, and
deduce the MSBs mg

Step 3: If m<> == m,, then return m}?i

otherW|se m,, < m,, + 1 and go to Step 2.
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Numerical example

Example:
@ Random filter with 3 states, 1 input, 1 output
@ i = 5.125, wordlengths set to 7 bits

states output

x1(k) x2(k)  x3(k) y(k)
Step 1 6 7 5 6
Step 2 6 7 6 6
Step 3 6 7 6 6

Table: Evolution of the MSB positions
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Numerical examples

oF 1
L 0
T A NARIEN!

Figure: The exact and quantized outputs of the example.
Quantized output does not pass over to the next binade.
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Numerical examples

o[ )
o
EE 0 x5 (k)
£ N
B Tt
=0
: -
- T U SO PE
24 L
16
B
a
185 205

Time

Figure: The exact and quantized third state of the example.
Quantized state passes over to the next binade.
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Work in progress:
"Verification of digital implemented filters against
specification."
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Filter specifications

The filters are designed from transfer function specifications in frequency
domain:

B < ‘H(eiw)’ < B, Vw € [wi,ws]

Example: lowpass filter

[H ()]
1+9,
1
1-4, 7
¢ G
| wp ws T w
[ —
passband stopband

< 146, Ywe[0,wp] (passband)
< 6 Vw € [ws, 7] (stopband)
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Reformulating the problem

Need to show that Vz € {e/|w € Q C [0, 7]}

B<IH(z) <8
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Reformulating the problem

Need to show that Vz € {e/|w € Q C [0, 7]}

B < HEZ)P <7

We have that

|H(Z)‘2 _ ‘b(2)|2 B b(z)b(z) _ b(z)b(3) - P(z)
a

1
a(z)?  a(z)az) a(z)a(i)  Q(2)

where P(z) and Q(z) polynomials with real coefficients.
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Reformulating the problem

Need to show that Vz € {e/|w € Q C [0, 7]}

We have that

|H(Z)‘2 _ ‘b(2)|2 B b(z)b(z) _ b(z)b(3) P(z)
|a

1
(2))?  a(2)a(z) a(z)a(l) " Qz)’

where P(z) and Q(z) polynomials with real coefficients.
Therefore, we need to show:

P(2)
Q(z)

!/

B < <p

We use the Sollya tool to prove it. )
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Basic brick: verifying the bounds of a rational function

‘H(ejw)‘ A

JAVAY

1 T 1 1 1
L 1 L[C 1 L 1 L 1

w1 wo w3  wWa

sy

v

Figure: If a specification is not satisfied, our algorithm returns the problematic
frequencies as small intervals &; and maximum overflows within those frequencies.
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Verifying a LTI filter implementation

Given a filter implementation compute the corresponding transfer function. J

Transfer function of a single-input single-output state-space system:
H(z) = c(zl — A)7'b+d.
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Verifying a LTI filter implementation

Given a filter implementation compute the corresponding transfer function. J

Transfer function of a single-input single-output state-space system:
H(z) = c(zl — A)7'b+d.
Using the eigendecomposition A = VEV 1

H(z) = 28 +d

P(z)=) (eV)i(V'b); [[(z—N)
i=1 J#i

Q) =]]z—-N)
j=1
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Verifying a LTI filter implementation

Given a filter implementation compute the corresponding transfer function. J

Transfer function of a single-input single-output state-space system:
H(z) = c(zl — A)7'b+d.
Using the eigendecomposition A = VEV 1

H(z) = 28 +d

P(z)=) (eV)i(V'b); [[(z—N)
i=1 J#i

Q) =]]z—-N)
j=1

We can compute an approximation ﬁ(z) in Multiple Precision arithmetic. J
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Verifying a LTI filter implementation

Bounding the approximation error:
dss — dSS = AdSS

Al

\/
H — H = AH

Figure: In red: inexact transformation. In green: exact transformation.
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Verifying a LTI filter implementation

Bounding the approximation error:
dss — dSS = AdSS

Al

\/
H — H = AH

Figure: In red: inexact transformation. In green: exact transformation.

Lemma

Given a discrete state-space system, the error of a multiple precision
approximation H(z) on its transfer function is bounded by:

‘H(z) - ﬁ(z)‘ <o,

where © = ((AdSS)) + ¢ is the Worst-Case Peak Gain of the system AdSS
computed with arbitrary small absolute error bounded by the € > 0.
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Verifying a LTI filter implementation

|H ()|
B
-6

w

Lemma

If the approximation ﬁ(z) satisfies

@+eg‘ﬁ(efW)]§B—e, Vw € Q (1)
Then the exact transfer function H(z) verifies the initial specifications
B<|H(E™)| <B, YweQ (2)

v
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Numerical results: comparing filter design tools

Butterworth Chebyshev Elliptic

lowpass MATLAB 1.29e-17 7.93e-17 v
SciPy 2.14e-15 4.48e-2 4.48e-2
highpass MATLAB 2.77e-16 6.94e-17 4.48e-2
SciPy 3.02e-15 2.29e-16 4.48e-2

bandpass MATLAB 3.04e-17 v v
SciPy v 4.48e-2 4.48e-2

bandstop MATLAB 4.59-16 3.09e-15 v
SciPy v 6.36e-15 7.02e-6

Table: Quality of the filters designd with MATLAB vs. 1SciPy for some simple
filters. For example, a lowpass filter here has 6, = 1072, §, = 107%, w, = 0.4,

ws = 0.57
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Numerical results:

comparing filter structures

filter Butterworth Chebyshev
wordlength 32 16 8 32 16 8
DFIlt margin v v 1.17e-2 1.97e-10 7.03e-6  7.42e-3
time 12s 15s 1minl7s 1min22s 35s 18s
DEIIt margin v 6.78e-2 X 1.21e-9 4.72e-4  8.35e-2
P time 13s  3minl7s unstable 1min26s  1min02s 17s
ss margin v 9.11e-7 9.64e-3 2.06e-10 7.64e-6 2.23e-3
time 15s 2min4s 1min01s 23s 49s 18s

Table: Filter structures for a lowpass MATLAB-designed filter.
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Work in progress:
"Code generation for FPGAs"

with Matei Istoan and Florent de Dinechin

FloPoCo

Circuits computing just right
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Binding with FloPoCo

FloPoCo SIF
synthesis of arithmetic units  + unifying representation — FPGA
(i.e. Sum-of-Products) (a bunch of Sum-of-Products ) implementation
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Binding with FloPoCo

FloPoCo SIF
synthesis of arithmetic units  + unifying representation — FPGA
(i.e. Sum-of-Products) (a bunch of Sum-of-Products ) implementation

FloPoCo: requires the the desired Fixed-Point Format of the output of a
Sum-of-Product.

SIF: we deduce a lower bound on the error of computation of each
Sum-of-Product s.t. the error-bound on the filter's output is respected.

Naive approach: the error-budget is distrubuted equally
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Binding with FloPoCo

FloPoCo SIF
synthesis of arithmetic units  + unifying representation — FPGA
(i.e. Sum-of-Products) (a bunch of Sum-of-Products ) implementation

FloPoCo: requires the the desired Fixed-Point Format of the output of a
Sum-of-Product.

SIF: we deduce a lower bound on the error of computation of each
Sum-of-Product s.t. the error-bound on the filter's output is respected.

Naive approach: the error-budget is distrubuted equally

We can do better

Take into account different impact of different Sums-of-Products.
BUT need to solve non-linear optimization problem
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Conclusion

@ Proposed a new completely rigorous approach for the Fixed-Point
implementation of linear digital filters

@ Provided reliable evaluation of the WCPG measure

e Applied the WCPG measure to determine the FxPF that guarantee
that overflow occurs

@ Proposed a new approach for the accurate computation of the transfer
function of an implemented filter

@ Proposed a rigorous approach on the verification of a LTI filter
implementation against its specification

@ Binding with FloPoCo gives possibility to fairly compare different filter
realizations
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Perspectives

Filter design and implementation:
@ Plug all the stages of the generator into optimization routines

@ Fairly compare finite precision implementation under various
constraints

@ Analysis of (short) floating-point implementations
From computer arithmetic point of view:

o Eigendecomposition with a priori absolute error bound

e Off-by-one problem

@ Optimize the quantization of filter coefficients using our specification
verification algorithm

@ Basic bricks multiple precision algorithms (transfer function, Lyapunov
equations,...)
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Future plans...

T+3 years Complete reliable dicj;.ital filter design tool
T+2yers | 1 bagic bricks for relabie fiter desi
gn
T+1 year
T
Now
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Thank youl
Questions?’
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L>-norm evaluation

Another related problem is the reliable evaluation of the Ly-norm.
If H is a transfer function, then its Ly-norm is defined by

1 27 ) )
Ml 2 \/ o | IHE) d

Parseval’s theorem gives another expression when H is described with
state-space matrices A, B, C, D:

|HI, = \/r(CW.CT +DDT)

- \Jr(BTW.B+ DTD)

where W . and W, are the controllability and observability Gramians of
the system.
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Gramians

o W._ is the controllability Gramian of the system.

o
W. 2 (A*B)(A*B)T
k=0
W . is the solution of the discrete-time Lyapunov equation

wW.=AW_.A" + BB’

o W, is the observability Gramian of the system.

W, 2 (CANT(CAK
k=0

W, is the solution of the discrete-time Lyapunov equation
w,=A"W,A+C'C
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Computation of the Gramians

The Gramians are usually computed by solving the discrete-time Lyapunov
equation X = AXA'" + Q
The following methods can be used:
e solve (Il —A® A)x=q
where x = Vec(X) and g = Vec(Q)
— numerically inefficient

o0
@ use infinite sum Z:A"C)AkT
k=0
— may required a lot of computation

@ use Hammarling's method, based on Schur decomposition of matrix A
— efficient, but required a deep analysis of the computational errors
of the algorithm

see “Computational methods for linear matrix equations”, V. Simoncini
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Reliable computation of the Ly-norm

@ How to have a reliable evaluation of the Ly-norm in multiple precision

@ How to proceed when A, B, C and D are interval matrices (small
radii, containing previously computed errors)
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Step 1. Bound on truncation error
Truncation error is the tail of the infinite sum:

3 ‘CA"B‘

k>N
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Step 1. Bound on truncation error

Truncation error is the tail of the infinite sum:
3 ‘CA" B(
k>N

Suppose A = XEX 1, where E = diag(\1,...,\,) is the eigenvalue
matrix and X is the eigenvector matrix. Then,

n
CA“B = CXE*X~1B = Z R\
=1
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Step 1. Bound on truncation error

Truncation error is the tail of the infinite sum:
3 ‘CA"B‘
k>N
Suppose A = XEX 1, where E = diag(\1,...,\,) is the eigenvalue
matrix and X is the eigenvector matrix. Then,
CA*B = CXE*X"'B=> R/Af
I=1

Bound on truncation error

3 ‘CA"B’ < p(A)NM
k>N
n
[Ril A
M = —_—
2T n ()
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Step 1. Bound on truncation error

Truncation error is the tail of the infinite sum:
3 ‘CA"B‘
k>N
Suppose A = XEX 1, where E = diag(\1,...,\,) is the eigenvalue
matrix and X is the eigenvector matrix. Then,
CA*B = CXE*X"'B=> R/Af
I=1

Bound on truncation error

|
p(A) M < g
N~ RN
—1—|X\][p(A)
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Step 1. Bound on truncation order

Lower bound on truncation order

IR/| )\/
M = —
Z 1— x| p(A

where m is defined as m := min|M; |.
N
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Step 1. Bound on truncation order

Lower bound on truncation order

IR/| >\/
M = —
Z 1— x| p(A

where m is defined as m := min|M; |.

Reliable evaluation

Interval Arithmetic and Rump’s Theory of Verified Inclusions are used to
determine a rigorous bound of N.

| {
A\

A\
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Step 2. "Diagonalization" of matrix A

T =v1!iav-A,
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Step 2. "Diagonalization" of matrix A

T =Vv1!Aav-A,
@ V is some approximation on X

@ A, represents the element-by-element errors due to the two matrix
multiplications and the inversion of matrix V
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Step 2. "Diagonalization" of matrix A

T =v1!avr-aA,

V is some approximation on X

A, represents the element-by-element errors due to the two matrix
multiplications and the inversion of matrix V

T diagonal in dominant with very small other elements

1Tl <1
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Step 2. "Diagonalization" of matrix A

T =v1!iav-A,
A= V(T + Ar)kv!

The error of substitution of A by VTV~

V(N +1)(N +2) |8zl [C V] |[VB]|,
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Step 2. "Diagonalization" of matrix A

T =v1!iav-A,
A= V(T + Ar)kv!

The error of substitution of A by VTV~

|
V(N +1)(N+2) |Az]|l [CV][ |[V!B||, < e
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Step 2. "Diagonalization" of matrix A

T =v1!iav-A,
A= V(T + Ar)kv!

The error of substitution of A by VTV~

|
V(N +1)(N+2) |Az]|l [CV][ |[V!B||, < e

A condition on the error-matrix A:

1 €2
V(N +1)(N+2) [[CV| VB¢

[Az]|F <
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Step 3. Computing products C’ and B’

CI =CV + A3C
B =V7B+A;

where Az € CP*" and A3, € C"*9 are error-matrices.

Bound on the multiplication errors As. and Aj,:

H < 1 1 €3
F=3/n N+1]CF

1 1 3
Bslr< - :
18s5lle < 357 W1 T87];

||A3c
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Step 4. Powering T

Py :=T"- A4

Ay, € C™" error-matrix on matrix powers, including error propagation
from the first to the last power.

P,=TP,_1+Ty,

where [, € C™ " is the error-matrix on the error of the matrix
multiplication at step k.

Bound on the error-matrix [,

1 1 1 €4
n N-1 N+1 [CT- 187,
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Step 5. Computing Ly

L, = CIPkB, + Ask,

where A, € CP*9 is the matrix of element-by-element errors for the two
matrix multiplications.

Bound on the error-matrix As,
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Step 6. Summation

N
Sn =D+ > _|Li|+ B,
1=0

where the error-matrix Ag € CP*9 represents the error of N + 1 absolute
value accumulations.

Bound on the error matrix Ag,
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