UPMC

SORBONNE

Ecole doctorale Informatique, Télécommunications et Electronique (Paris)

THESE

pour obtenir le grade de
DOCTEUR de I'UNIVERSITE PIERRE ET MARIE CURIE

Spécialité Informatique

Présentée par

Anastasia VOLKOVA

Towards reliable implementation
of digital filters

Directeur de thése: Jean-Claude BAJARD
Encadrants de thése: Thibault HILAIRE et Christoph LAUTER
Apres avis de: Martine CEBERIO

David DEFOUR
Olivier SENTIEYS

Soutenue publiquement le 25 Septembre 2017 devant le jury composé de :

M. Jean-Claude BAJARD Université Pierre et Marie Curie
Mme. Martine CEBERIO Université du Texas a El Paso
M. David DEFOUR Université de Perpignan

M. Thibault HILAIRE Université Pierre et Marie Curie
M. Lionel LACASSAGNE Université Pierre et Marie Curie
M. Christoph LAUTER Université Pierre et Marie Curie
M. Jean-Michel MULLER CNRS, ENS de Lyon

M. Olivier SENTIEYS Inria, Université de Rennes |

To my brother Konstantin

ACKNOWLEDGMENTS

y first words of gratitude go to Thibault Hilaire and Christoph Lauter, for their excellent

skills as thesis advisors. At all times you have given me a perfect equilibrium of

guidance and freedom, as well as equilibrium of two different approaches on doing
science. Thank you for providing me with interesting challenges and pushing towards better
results while giving me the freedom to choose my own way. | will always be grateful to you for
becoming my friends, not only professional but above all personal. Without your beleif in me,
this thesis would not be possible.

| would like to thank Thibault for his welcome ever since | have arrived to France, for all those
brainstorm sessions when we were on the same wavelength, for our endless conversations on a
billion topics at the same time and for always finding right encouraging words. Merci!

| am grateful to Christoph for his cunning comments (in four languages and with illustrations!)
on my writing, for guiding me through the French administrative hell and for always finding time
for me. Thank you and your family, Olya and Sasha, for practically accepting me as your own
and for your support, especially in the last moments of redaction. Danke, mein Doktor Vater!

Of course, | would like to thank Jean-Claude Bajard for being my thesis director. Even though
we have never worked together on common research projects, you have always been ready to
share your experience and to give me helpful advices on research and the world of science.

My sincere gratitude goes to the reviewers of this manuscript, Martine Ceberio, David Defour
and Olivier Sentieys. Thank you for the thorough feedback, invaluable remarks and advices. |
am grateful for the different angles of perception of my work that you have provided me with. |
would also like to thank Jean-Michel Muller and Lionel Lacassagne for agreeing to be members
of the jury. In addition, | thank Jean-Michel for his interest in working with me after the thesis
and supporting my application all the way to a postdoc position.

It is a pleasure for me to thank my coauthors Florent de Dinechin, Matei Istoan, Fahad
Qureshi and Jarmo Takala for the most interesting exchanges on the methodologies of the
Fixed-Point implementation.

My warm thanks go to the members of the PEQUAN team, for providing me with a working
environment full of diversity of research topics and with a friendly atmosphere. In particular, my
gratitude goes to Stef for his advises, support, friendship and, of course, patience through my

“stolen passport” adventures. | also thank Irphane for his invaluable help with the administration
and for sometimes making the impossible possible.

Through the three years of my thesis, | was lucky to find myself surrounded by fellow PhD
students who, through our closeness of the spirit, became dear friends. | thank Benoit and Julien
for being an excellent and adventurous company during the first year of my thesis. Without
Vincent, Thibaut V., Matias, Charles, Clothilde, Guillaume, Alex G., lvan, Ana-Maria and other
people whose names | forgot to mention (and whom | humbly ask for forgiveness), going through
this thesis would be a lot less fun. | thank Ivan, Alex G. and Thibaut V. for teaching me the
“real-life” French language (though | wish | could un-learn some phrases!). And thank you,
Clothilde and Charles, for always being ready to help, even without being asked to. Thanks to
scientific traveling, | was also lucky to find excellent friends in colleagues from other cities: my
most warm thanks go to Valentina, Silviu and Matei.

Being a foreigner is never easy but, thanks to compatriots, longing for the homeland is less
strong. | thank Katia, Tania and Denis for being my small parisian Ukraine. My gratitude also
goes to Lilya, Ira, Daniel and Nastia, for their continuous friendship regardless relocations to
different countries.

This thesis would be impossible without my parents and my brother, without their uncon-
ditional belief, encouragements and motivation. Thank you for not letting me to choose “easy”
studies and for motivating me to do challenging ones. | will be eternally grateful for the opportu-
nities that you have given me, or have encouraged me to take. It is your good examples that
have taught me to work hard for the things | aspired to achieve.

| would also like to thank Marie-Eve, Frank and Henri for being a wonderful family-in-law, for
doing everything to comfort me during the redaction and for always making me feel at home.

Finally, from all my heart | thank Alex for being my support, my pillar of calmness and my
source of strength in the most challenging moments. | am deeply grateful for your understanding,
practical advices and for encouraging me when the tasks seemed arduous and insurmountable.

Vi

Table of Contents

Page

Introduction 1
I Technical Pre-requisites 9
1 Digital filters 11
1.1 Discrete-timesignals 11

1.2 Discrete-timesystems 12

1.3 Z-transform 14

1.4 Designof lIRfilters 16

1.5 FilterStructures 19

1.6 Conclusion 24

2 Computer Arithmetic 25
2.1 Fixed-Point Arithmetico 27
2.2 Floating-Point Arithmetic 31
2.3 Finite Precision Effects for IR filters 36
2.4 Conclusion 41

3 Towards reliable implementation of Digital Filters 43
3.1 Automatic Filter Code Generator, 43
3.2 Specialized ImplicitForm 45
3.3 Conclusion e 48

vii

TABLE OF CONTENTS

Il Improvements to the Specialized Implicit Form

4 Specialized Implicit Form for Lattice Wave Digital Filters

4.1
4.2
4.3
4.4

Lattice Wave Digital Filters
A LWDF-to-SIF conversion algorithm
Conversionexample L
Conclusion L

5 General algorithms for conversion

5.1
5.2
5.3
5.4

Conversion of data-flow graphsto SIF
Conversion of arbitrary structures to transfer functions
Numerical examples
Conclusion e

Il Reliable Fixed-Point Implementation of Digital Filters

6 Reliable evaluation of the dynamic range of an exact filter

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

State of the Art
Algorithm for Worst-Case Peak Gain evaluation
Truncation order and truncationerror.
Summation e
Basicbricks
Numerical examples
Extending the WCPG theorem to the range of the state variables
WCPG forinterval systems
Conclusion e

7 Determining Reliable Fixed-Point Formats

71
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Determining the Fixed-Point Formats
Taking rounding errors intoaccount
Error analysis of the MSB computationformula
Complete algorithm
Numericalresults
Application to the Specialized Implicit Form
Conclusion e
Ongoing work: Off-by-One Problem
Ongoing work: Taking into account the spectrum of the input signal

viii

49

51
51
54
62
63

65
65
69
76
77

79

81
82
86
89
92
99
100
101
103
104

TABLE OF CONTENTS

8 Rigorous verification of
8.1 Problem statement
8.2 \Verifying bounds on
8.3 \Verifying bounds for
8.4 Numerical examples
8.5 Conclusion

IV Hardware Code Gene

9 LTI filters computed just
9.1 Introduction

implemented filter against its frequency specification

atransferfunction.
any LTl realization

ration

right on FPGA. Implementation of Direct Form |

9.2 Error analysis of direct-form LTl filter implementations.

9.3 Sum of products computing justright. oL

9.4 Implementation resu

tS . . . e

9.5 Conclusion e

Conclusion and Perspectives

A Appendix
1 Lattice Wave Digital

Filter basic brick data-flows

Error analysis behind the Multiple Precision basic bricks

2
3 Coefficients for the e
4 Off-by-One problem

Bibliography

xamples

129
130
131
135
139
141

143

145
146
148
151
152
153

155

163
163
164
166
170

173

NOTATION

Acronyms

SIF Specialized Implicit Form

LTI Linear Time-Invariant
IR Infinite Impulse Response
FIR Finite Impulse Response

SISO Single Input Single Output
MIMO Multiple Input Multiple Output
LWDF Lattice Wave Digital Filter

FP Floating-Point

FxP Fixed-Point

SOPC Sume-of-Products by Constants

Conventions

Scalars / Vectors / Matrices: apart from exceptions, throughout this document scalar quan-
tities are in lowercase (e.g. x), vectors are in lowercase boldface (e.g. x), matrices are in
uppercase boldface (e.g. X).

Exception: we denote an impulse response matrix of a MIMO filter as (k).

Absolute Values and Inequalities: apart from exceptions, all matrix absolute values and
inequalities are applied element-by-element. For example, |A| < |B| denotes |A;;| < |B;j|, Vi, .
In addition, A < e denotes A;; <e, Vi, j. Norms, such as Frobenius norm, notated ||A ||z, stay
of course norms on matrices and are not to be understood element-by-element.

Zero and Identity Matrices: 0 denotes a matrix of zeros, the size of which is usually deduced
from the context; I,, denotes an identity matrix of size n x n.

Intervals: a real interval [x] is defined with its lower and upper bounds [x] := [x,x]. An interval
matrix is denoted by [M:= [M, M1, where each element [M;]is an interval [M;;]1=[M, ., M;;].

—lj’

Xi

INTRODUCTION

f you have ever watched television, taken a plane or listened to an MP3 then you have

taken advantage of digital signal processing. You might have noticed that sometimes a

small interference in a TV signal occurs, or that the voice of your interlocutor is distorted
over the phone. This may mean that something went wrong in the way the data was processed
in the device. Usually you do not even mind those occasional failures. However, when you are
in an airplane you do mind if any failure happens in a critical system and the airplane crashes.
When people launch a satellite into orbit, they try to ensure that all the signals are correctly
processed and no failure ever happens; in the end you cannot just come and fix it!

In this thesis we consider signal processing and control algorithms for applications where
guarantee and reliability are cornerstones.

The advancement of digital computers during the 1960s paved the way for many electronic
devices to be emulated with digital computers where all information is usually stored in binary
format, i.e., as a sequence of ones and zeros. For example, music used to be recorded and
distributed in analog form such as magnetic tapes until the 1980s, when CD players have made
digital recording of music common.

There are two very important advantages to digital signals. First, they can be reproduced
exactly; all you have to do is to make sure to thoroughly copy the sequence of ones and zeros.
Second, digital signals can be easily manipulated: once we have a discrete-time representation
of a real-world signal, we are left with a sequence of numbers, e.g., temperature and audio
signals both boil down to just sequences.

So what can we do with signals? We can filter out unwanted parts, combine several signals
into one, enhance certain parts and discard others, etc. A transformation of a digital signal in
order to amplify or attenuate some of its properties is called a Digital Filter. Any given digital filter
may be computed with numerous different algorithms that compute the desired output in different
ways. Some of the algorithms are faster and expensive, others are slower but cheaper, etc. The
process of translating an algorithm into a computer program or a circuit is called implementation.

In this thesis we will address the question of implementation of digital filter algorithms.

INTRODUCTION

Despite its advantages, digitalization comes at a price. In digital computers values are
required to have a finite number of digits in their representation, i.e. finite precision. During
manipulations with values in finite precision, errors often occur. Suppose all numbers that you
can represent on a computer must fit into two decimal digits and you need to square 1.7. You
know that 1.72 = 2.89 but all that you can represent is two digits. The two-digit result that you
return (2.8 or 2.9) will depend on the computer arithmetic that you use but anyway, an error
between the exact and computed values inevitably occurs. This error inherently depends on the
order in which computations are done. Usually, the more precision you use for your computations,
the smaller the error becomes.

Thus, when we evaluate a Digital Filter with some algorithm, varying the parameters of
the arithmetic and the quantity of resources (for instance precision) yields different results, i.e.
different errors. The race towards smaller, faster and more energy-efficient signal processing
devices dictates very strict requirements for digital filters. For implementations dedicated to
embedded systems, precision is almost in direct opposition to these requirements: for example,
the more digits we need to operate with, the slower the algorithm works. The goal is to find
the maximum acceptable degradation of precision. For reliable implementations, the task is
even more complicated: the error due to the finite-precision implementation must be rigorously
accounted for and the implemented algorithm must always produce an output that is within this
error margin from the ideal result.

For a given algorithm there exist many possible implementation settings that can be changed.
The fact that each Digital Filter may be implemented with different algorithms significantly
enlarges the design space. Very quickly the implementation process becomes time-consuming.
And in order to produce a reliable implementation designers must analyze the effects of the
arithmetic and precision choices for each algorithm. Doing this manually is not always feasible
and requires a deep expertise. Thus, we come to the goal of our work.

In this thesis we work on the numerically reliable and automated implementation of digital filters.

Our focus is mainly on the automatic and rigorous analysis of finite-precision effects on an
arbitrary filter algorithm from the computer arithmetic point of view. In this work you will see how
to reliably determine the worst possible error induced by a finite-precision implementation. We
will also show how to determine the trade-off between the precision and the output error which
will help us choose the best (in certain sense) implementation. Our approach will be applicable
to any possible algorithm in the broad class of Linear Time Invariant filters.

To achieve our goals, we will intertwine techniques from the areas of both digital signal processing
and computer arithmetic.

INTRODUCTION

Constraints

HW/SW Code
code

generation

Finite
precision
‘ settings '

Figure Y: lterative nature of the filter implementation flow

Algorithm

Filter choice

Specifications

Implementation of digital filters

A digital filter should be seen as a set of specifications that describe the desired behavior. Usually,
digital filters are designed with respect to some frequency specifications, for example audio
filters that filter out high and suppress low frequencies. Mathematically, these specifications can
be described with the help of a rational function, called transfer function.

A filter algorithm should be seen as a set of instructions the digital filter can be evaluated
with. For every digital filter there exist numerous different evaluation algorithms; we will call them
structures. Thus we come to the following: a digital filter is a set of requirements of what should
be done, and an algorithm shows how it is done.

By the implementation of a linear digital filter we understand a transformation that goes from
the transfer function (or just requirements on its behavior), via a filter algorithm to the software
or hardware code.

Every implementation is based on a choice of the filter structure. All structures are based on
elementary arithmetic operations, additions and multiplications by constants. These constants,
called coefficients, are the parameters of the structure: changing the coefficients changes the
filter that is evaluated with the structure. Thus, given a structure, the designer must determine
the set of coefficients of this structure that realize the transfer function that is about to be
implemented. This process is called the realization of a filter with a given structure.

In different structures the number and order of arithmetic operations are different, as well as
the number of coefficients. The designer must choose a structure that best suits the application
constraints (for example, the implementation is required to be parallelizable) and realize the filter
with this structure.

Once the realization is obtained, the designer must define the parameters of its finite-
precision counterpart. The quality of a finite-precision implementation is measured with by
accuracy, i.e. how many digits in the output of the signal processing system are correct. For
example, for hardware targets the designer needs to make several architectural choices that
influence the accuracy of the algorithm. These choices include: (i) the choice of the arithmetic,

3

INTRODUCTION

i.e. the rules with which all arithmetic operations are conducted; (ii) the precision with which the
values will be stored. Different structures have different numerical properties. For example, to
achieve the same level of accuracy, some algorithms require more resources for the intermediate
computations and the others require less. Accuracy is not the only requirement, we usually seek
to satisfy certain constraints on the speed, area, power consumption, etc.

If the implementation result is not satisfactory, another structure is chosen and the process
repeats. The implementation of a filter becomes a long chain of trial and error when the designer
moves back and forth between different implementation stages. The iterative nature of this
process is illustrated in Figure Y.

The task is even more complicated when we need to deliver a reliable implementation. A
reliable implementation is a couple of an error-bound and the software/hardware code that is
guaranteed to always produce an output that differs from the ideal not more than by this error. In
other words, reliable implementations are required to always deliver a given accuracy.

In signal processing, reliability and the accuracy of the filter are often determined using
simulations. With this approach, the implemented system is compared to some reference
implementation via extensive testing and the maximum error that occurred is taken as an error
bound. While being easy to adapt to any structure, this approach is often very slow. Moreover,
simulations cannot guarantee that all, even rare, cases have been checked. Another approach is
to investigate the numerical properties of the filter structure and deduce the statistical distribution
of errors. However, such analysis is structure-specific and, most importantly, does not provide
any bounds on the error.

The reader may wonder why the finite-precision effects on filters have not been studied
using the computer arithmetic approach. The reason is simple: historically the two scientific
domains have only had a few interfaces and little in common. In this thesis, we will try to fill the
gap between them and benefit from the best approaches of both domains.

Towards automatic filter code generation

There exist software tools that help designers with filter implementation, such as Matlab and
Simulink. While significantly simplifying the implementation process, they do not make any
decisions for the designers, leaving them with the burden of the proof of reliability.

To accelerate the implementation and automatize some designer choices, an automatic filter
code generator may be used. There already exist some frameworks for semi- or fully automatic
filter implementation [1-3]. However, the major drawback of the existing tools is that they are
application- or structure-specific and do not give any guarantee that the implementation is
reliable in the sense that we defined.

INTRODUCTION

To remedy the disadvantages of existing solutions and to provide an automatic and reliable
way to implement linear filters, an automatic code generator has been designed [4, 5]. This
generator targets implementation in Fixed-Point arithmetic, which is probably the most widely
used arithmetic for embedded systems. It aims at implementing linear filters, a broad class of
algorithms used in both signal processing and control.

Hilaire proposed the outline of the generator in [4, 5] and Lopez continued in [6]. The code
generator is based on the idea of unification: all filter structures can be described with a unified
analytical representation called Specialized Implicit Form (SIF). This representation is based on
writing explicitly all computations that define a filter structure in an analytical form. SIF represents
at the same time a “language” for the description of any linear digital filter and a tool for their
analysis. It is enough to detail the implementation process for filters in SIF and it may be applied
to any structure. The workflow of the code generator follows the classic implementation flow
from Figure Y with the exception that the structures are represented with SIF.

While the major outline of the code generator was developed before this thesis, the essential
part is missing: there is still no approach that provides rigorous error analysis of finite-precision
implementations.

The goal of this thesis is twofold: first we aim at providing a new methodology for the error
analysis when linear filter algorithms are investigated from a computer arithmetic aspect. Our
goal, in particular, is to analyze recursive filters. At the same time, using the SIF, we incorporate
our approach into the automatic filter code generator. To do so we will also need to extend some
of the functionalities of the existing code generator.

In this manuscript we are going to address the following questions:

— The SIF was conceived to be able to describe any linear digital filter structure. However,
having a language for the description of digital filters and applying it are different things.
Several structures have already been translated to the SIF description. However, the
question is how can we automatically translate an arbitrary structure to the SIF represen-
tation? Often filter structures are described in graphical representation, such as data-flow
graphs. This representation is constantly used in practical engineering implementations
due to its resemblance to digital circuits. We first investigate [7] how data-flows that
describe a particular structure, Lattice Wave digital filter, can be expressed in SIF. Then,
we generalize [8] our approach to any data-flow describing a linear digital filter.

— When the designers manipulate a filter realization they should be able at any moment
to recover the transfer function that corresponds to this realization. For example, when
we slightly change the coefficients of the realization and must verify that this algorithm

5

INTRODUCTION

still evaluates the filter we want. Thus, another question arises: how can we compute
the transfer function corresponding to an arbitrary filter in SIF representation? In general,
exact computation of a transfer function corresponding to a filter is not practically feasible.
We will show [9] how to compute an approximation of the transfer function and give a
rigorous bound on the approximation error.

— How can we build a reliable Fixed-Point algorithm with a guarantee on its accuracy? In
Fixed-Point Arithmetic numbers have fixed-sized integer and fractional parts, therefore
this question needs to be answered in two steps:

— First, what are the ranges of all variables involved in the evaluation of filter algorithm?
In other words, given the range of possible input signals we need to determine
the range of all possible intermediate and output values that may occur in the
filter algorithm. One of the approaches is based on the Worst-Case Peak Gain
(WCPG) measure [10]. However, this measure cannot be computed exactly but only
approximately without any guarantee on the approximation. We will reinforce this
approach by providing algorithms [11, 12] for the reliable evaluation of the WCPG
measure with arbitrary accuracy. They will allow us to compute a rigorous bound
on the dynamic range of all variables involved in the evaluation of the exact filters,
and consequently how many digits we need to dedicate to the integer parts when
stocking these variables.

— Second, given wordlength constraints for storage of all variables, what is the best
position of the binary point? Here we need to achieve two goals: the binary point
must respect the size of the integer parts deduced from the dynamic ranges, and
at the same time we aim at having the longest fractional part possible to obtain
more precision. The problem is that the ranges computed with the WCPG measure
correspond to an ideal filter but not an implemented filter. In implemented filters,
the fractional parts have finite lengths and arithmetic operations are not exact.
These effects lead to errors that may propagate up to the integer parts and yield
to a non-representable value (overflow). Again, using the WCPG we will show how
to rigorously evaluate the non-linear propagation of errors due to finite-precision
implementation of recursive filters. Then, we take this propagation into account in
a general algorithm [13, 14] which, given wordlength constraints, tries to find the
best position of binary point. At the same time, we will also provide a tight bound on
the worst-case error of the implementation. Again, we will use computer arithmetic
techniques to rigorously prove all error bounds.

6

INTRODUCTION

— For reliable implementations, it is necessary to have a guarantee on the error of the
implementation in the time domain. However, this guarantee is not worth anything if the
eventual signal processing system does not satisfy the filter specifications in terms of its
frequency response. Thus, the question is: does the implemented filter satisfy the desired
frequency specifications? We will address the possibility of such a certification and show
how this verification can be done for any linear filter algorithm. With our approach [9],
the problem boils down to a verification of the positivity of a polynomial on some domain.
Using various computer arithmetic techniques, we provide a fast implementation of this
check that is rigorous in the sense that it never gives false positive answers.

— How to build a hardware circuit that guarantees an accurate output without wasting
resources? We consider generation of such architectures on Field Programmable Gate
Arrays (FPGAs). We aim at providing designs which have their implementation error
not larger than the weight of the last bit of the output. Usually, this is achieved by using
extended precision for internal computations, i.e. adding guard bits. We collaborate with
the FloPoCo [15] project and provide a hardware code generator that uses just enough
precision for internal computations (i.e. no resource wasted) to guarantee that level of
accuracy for the output [16].

A complete methodology for the automatic and reliable Fixed-Point implementation of linear
digital filters will also permit the filter designer to cover a large design space in search of the
best implementation under various constraints. Using new functionalities of SIF we will be able
to produce a reliable Fixed-Point implementation upon any filter algorithm. What is important, is
that the kernel algorithms that we provide are rigorous and are very well-suited to be used in
extensive optimization routines.

Also, in a collaboration with the Tampere University of Technology, Finland, we applied our
techniques to the analysis of a particular hardware architecture implementing Fast Fourier Trans-
form [17]. Even though this contribution concerns reliable implementation of signal processing
algorithms, in reality it is situated in a context too distant to be presented in this thesis.

Overall, this thesis has led to the following publications: [7-9, 11-14, 17].

Organization of the document

This thesis follows the order of the questions mentioned above. This order is natural in terms of
the workflow of the code generator and is almost chronological. The document is divided into
four parts, each subdivided into chapters.

INTRODUCTION

PartI: Chapters 1 and 2 give an overview of the main notions within the realm of digital filters
and computer arithmetic as well as a general picture of typical problems that occur during the
finite-precision implementation of digital filters. Finally, Chapter 3 describes the state of the art
of the code generation tool before this thesis.

Part ll: Chapter 4 is more technical than theoretical and concerns the conversion of Lattice
Wave Digital filters into the SIF representation. Chapter 5 incorporates the algorithm for the
conversion from data-flow graph into SIF and our approach for the approximation of the transfer
function corresponding to filters in the SIF.

Part Il Here we present the kernel algorithms for the Fixed-Point Implementation of linear
filters. Chapter 6 concerns the computation of the dynamic range of all variables involved in the
filter evaluation. We present rigorous error analysis of the computation of the Worst-Case Peak
Gain measure in multiple precision arithmetic. Chapter 7 contains the general approach for the
determination of reliable Fixed-Point formats. The problem of verification of an implemented filter
against frequency specifications is addressed in Chapter 8.

Part IV This final part is comprised only of Chapter 9. In this last contribution we make our
first steps towards reliable implementation of any linear filter on FPGAs by first proposing
implementation of the Direct Form | structure.

The reader will find the conclusion of this thesis along with the perspectives in the last Chapter.

PART I

TECHNICAL PRE-REQUISITES

CHAPTER

DIGITAL FILTERS

n this Chapter we recall to the reader the concept of real-valued discrete-time signals
and Linear Time-Invariant systems, also called filters in our context. We also give a short
overview of properties of filters. We are particularly interested in recursive filters and their
properties. In practice, these systems can be evaluated in many different ways that depend on
the application, performance requirements, etc. These filter computational algorithms are called
structures and we present a few of them.
We refer the reader to classic digital signal processing texts like [18, 19] for a systematic
presentation and details.

1.1 Discrete-time signals

Discrete-time real signals are represented mathematically as sequences that can be formally
written as

u={uk), YkeZ. (1.1)

The integer index % represents dimensionless time', i.e. gives a chronological order to the
elements of sequence. This comes from the fact that the discrete-time signal u(%) is usually
obtained by constant sampling of a continuous signal %(¢): u(k) = w(kTs), where T is the
sampling period.
Remark 1.1. In the manuscript we will abuse the notation and even though u(k) denotes the
k™ element of sequence u, we will denote the whole sequence by u(k) when needed.
The following elementary operations on signals will be useful for this work:
Shift A sequence u(k) shifted by an integer K is y(k) = u(k — K) for all k. If K is positive,
then the signal is said to be delayed by K samples.
Scaling A sequence u(k) scaled by a e R is y(k) = au(k).
Sum A sum of two sequences is their term-by-term sum y(k) = u(k) + z(k) for all &.

1Throughou'[the text we reserve the independent variable % to denote an integer index of a discrete-time signal.

11

CHAPTER 1. DIGITAL FILTERS

u(k) y(k)
—» T >

Figure 1.1: Representation of a discrete-time system.

The simplest discrete-time signal is probably the impulse signal, denoted 6 and defined as

vk, oky=q =0 (1.2)
’ “lo, E#£0 '

This signal is central to describing digital systems. Any signal can be expressed as a linear
o0

combination of suitably weighted and shifted impulses: u(k)= Y &k —0Du(l).

l=—00

1.2 Discrete-time systems

A discrete-time Single-Input Single-Output (SISO) system is defined as a transformation or
operator that maps the input sequence u(k) to an output sequence y(k):

y(k) = T{u(k)}. (1.3)

When for all £ the input signal u(k) and output signal y(k) are scalar (i.e. u(k),y(k) €
R), then the system is called Single Input Single Output (SISO). When for all £ the signals
u(k)eR?,y(k) € RP are vectors, then the system is said to be Multiple Input Multiple Output
(MIMO).

In this thesis we are interested in studying the Linear Time-Invariant (LTI) discrete-time
systems which we are going to define just below. A system of this type is referred to as a filter.

1.2.1 LTI systems

Let u1(k) and ug(k) be two signals given as inputs to a discrete-time system /. Then the
system /2 is called a Linear Time-Invariant system if it satisfies

+ the Linearity property:
Faui(k)+ Pus(k)} = aFlu(k)} + B {ua(R)} (1.4)
for any a, B8 €R, and
+ the Time-Invariance property:

y(k) = AH{u(k)} & H{u(k - K)} = y(k - K), (1.5)

12

1.2. DISCRETE-TIME SYSTEMS

which basically means that if the input signal is delayed by K samples, the output is also
delayed by K samples.

It turns out that an LTI system can be characterized by its impulse response, i.e. by the
sequence h(k) = #{5(k)}. Indeed, using the linearity and time-invariance, we obtain that

y(k):yf{u(k)}sz{li u(l)5(k—l)} (1.6)
- _f w() 746k — 1)) (17)
= 3 uOhte-D (1.8)
=: (_L:c:h)(k), (1.9)

where " x " is the convolution operator defined by (1.9). The convolution operator has a lot of
useful properties, for a full list of which we refer the reader to [18]. To summarize, the associativity,
distributivity over addition and commutativity of the convolution operator permit us to do various
combinations of LTI systems, see Figure 1.2.

u(k) y(k) u(k) y(k)
—| (B xhy)(k) — —» (i +) (k) —>
u(k) y(k)
—»| (k) —B hao(k) —> hi(k) j
u(k) y(k)
u(k) y(k) %
—» (k) — h(k) —> ha (k)
(a) Cascades (b) Parallel combination

Figure 1.2: Equivalent operations over SISO filters.

There exist two classes of LTI systems with respect to the behavior of impulse response:

+ Finite Impulse Response (FIR) filters that have an impulse response with finite support,
i.e. there exists a finite K such that for all £ > K the impulse response A(k) is zero;

+ Infinite Impulse Response (lIR) filters that have an impulse response with infinite sup-
port, i.e. they do not become exactly zero past a certain point but continue indefinitely.

13

CHAPTER 1. DIGITAL FILTERS

Stability: A system is called Bounded-Input Bounded-Output (BIBO) stable iff its output is
bounded for all bounded input sequences. This is a very natural requirement for a filter, since
it states that the output will not "blow up" when the input is bounded. LTI filters are stable iff
the impulse response is absolutely summable, i.e. when [|A||,, exists. More practical stability®
criteria are defined using the Z-transform, see Section 1.3.

Causality: A system is called causal if its output does not depend on any "future" inputs,
i.e. the output y(k() depends only on the input samples u(k) for k& < k. That implies that for
causality of LTI systems the condition is (k) = 0 for all £ < 0; see [18] for details.

In this manuscript we consider only stable causal LTI filters.

1.2.2 Linear Constant-Coefficient Difference Equations

A convenient way of describing LTI systems is using constant-coefficient difference equations
(CCDE). CCDEs define the relationship in time domain between an input signal u(k) and the
output y(k) as

Nl Z\[2
i=0 i=0

Throughout the manuscript we restrict ourselves to the case of real coefficients a and b;. We
can normalize the coefficients in order to have ag =1, so that the above equation is rearranged
as

Ng Nl
y(R)=) biutk—i)— > ajy(k—i). (1.11)
1=0 i=1

CCDE (1.11) describes an IR linear system. If Vi > 0,a; = 0, it describes a FIR system. The
difference may be interpreted in the following way: in FIR filters the output is computed solely out
of the input signal, while the output of the IIR filters also depends on the previous Ng outputs.

Everywhere in the thesis we consider filters to have zero initial conditions, i.e. in response to
the zero signal, a zero signal is generated.

1.3 _Z-transform

Discrete-time systems are often characterized by their oscillatory behavior which is analyzed in
the frequency domain. Usually to obtain the frequency-domain representation of a signal, the

2Everywhere in the manuscript under "stable" we will understand "BIBO-stable" filters.

14

1.3. Z-TRANSFORM

Fourier Transform [20] is used:

U)= Y ulk)e ™", wel0,2n). (1.12)

k=—00
However, in practice, the Z—transform of a discrete-time signals is used:

Ur)=Zulz)= Y uk)z™, zeC. (1.13)

k=—00
Remark 1.2. Just like in the case of the signals, we will abuse the notation and express the
Z -transform of a signal u not by Z{u}(z) but by Z{u(k)}.

The Z—transform represents a counterpart of the Laplace transform [20], which is, in turn,
used for continuous-time signals®. Indeed, U(z) evaluated over the unit circle, i.e. for z = e/, is
the Fourier Transform.

Two important properties of the Z—transform are:

- Linearity: Z{au1(k) + Bua(k)} = aU1(2) + BUs(z) and
« Time-Shift: Z{u(k — K)} = z X Z{u(k)}.

We can also use partial fraction expansions to compute the inverse Z-transform [21].

Then, applying the Z—transform to the CCDE representation (1.11) with the above two proper-
ties, we obtain

N,) N, _
Y()=) biz7'UR)+) aiz 'Y (2) (1.14)
i=0 i=1

and hence
Y(@)=H(2)U(2), (1.15)

where H(z) is called the transfer function of the filter (1.11). Obviously, in the case of FIR filters,
i.e. when all a; =0, H(2) is just a polynomial.
In case of IIR filters H(z) is a rational function:

n 1
i=00iz

Hz)=—,
@) 1437 ja;27!

zeC. (1.16)

Here n denotes the degree of the filter and n = max(N1,Nq). If N1 # No, we complete the
polynomial of smaller degree by zeros, i.e. b; =0for No<i<nanda; =0 for Ny <i <n.

The general relationship between the time-domain representation and frequency-domain
representation is illustrated on Figure 1.3.

SThe Laplace transform can be seen as a generalization of the Fourier Transform for continuous-time signals

15

CHAPTER 1. DIGITAL FILTERS

Time domain ~ #(k) —— » | h(k) |— y(k) = h(k) x z(k)

Z — transform Z — transform Z — transform

y { }

Frequency domain x(z) ——» H(z) |— Y(z)=H(z) - X(z)

Figure 1.3: Time and frequency domains.

Zeros, poles and stability: The roots of the numerator of H(z) are called the system’s zeros
and the roots of the denominator are called the system’s poles. If a root of the denominator has
multiplicity 1, it is called a simple pole, otherwise it is a multiple pole. It can be shown [18], that
for an LTI system to be causal and stable, its poles must lie strictly inside the unit circle. We refer
the reader to [18] for a proof.

If there are one or more simple poles exactly on the unit circle, the filter is called marginally
stable. For most practical filters, all the poles are designed to lie inside the unit circle. However,
for oscillators, the poles are placed on the unit circle on purpose.

1.4 Design of lIR filters

1.4.1 Frequency specifications

The dynamics of LTI systems are characterized by the system’s frequency response. It is a
measure of magnitude and phase of the output as a function of frequency in comparison to the
input. The frequency response of a filter is the value of its transfer function evaluated on the unit
circle:

H(ejw)z)H(ejw)|ejKH(€jw)’ w€[0,2ﬂ), (117)

where |H(ej‘”)| is the filter's magnitude response and £ H(e/) is the phase response.
Classically, filters are designed with respect to the magnitude response specifications in
the frequency domain, in order to amplify (or preserve) signals in some frequency bands, and
attenuate them in other bands.
A filter specification is composed of several passbands (i.e. the gain of the filter for these
frequencies should be between given bounds) and stopbands (the gain should be lower than a
given bound), formally described as:

i |H(ej‘”)| <B, Voelw,ws)<[0,27]. (1.18)

16

1.4. DESIGN OF IIR FILTERS

0

Ws; Wpy, Wpy Ws, ™

stopband passband stopband

Figure 1.4: A passband filter specification.

For instance, Figure 1.4 illustrates a passband filter specification which can be described as
the following system of inequalities:

|[HEe/?)| = 6, VYowel0,ws,] (stopband)
8py <|H(@)| = 6p,, Vwelwp,wp,] (passband)
|[HEe/?)| = 65, VYowelws,,n] (stopband)

Remark that no conditions are applied to the magnitude response in the intermediate frequency
intervals (ws,,wp,) and (w,,,ws,). These bands of frequencies are called fransition bands. Very
often filter designers aim at having small transition bands.

Here w denotes the normalized frequency which is a unit of measurement of frequency
equivalent to cycles per sample. In practical applications filter designers prefer to use frequencies
f= %Fs that are measured in Hertz, where F is the sampling rate (Fs = Tls). The bounds on
the magnitude response are often given in decibels (dB), x dB means 10264,

Due to the Nyquist-Shannon theorem [18], for causal filters with a real input/output relation-
ship it is only necessary to specify the frequency up to % or the normalized frequency up to n
instead of 2.

In terms of the phase response, filter designers usually seek to have a linear phase which
means that the phase response of the filter is a linear function of frequency. A linear phase
filter will preserve the waveshape of the signal (to the extent that it is possible given that some
frequencies will be changed in amplitude by the filter). However, phase characteristics are out of
the scope of this work.

4Deci means 10 and logically we should have lio, however since the power measures are proportional to to
squares of filed measures, there is a confusing 2 that appears and results in 2x—0 [22]

17

CHAPTER 1. DIGITAL FILTERS

1.4.2 Design methods

Given frequency specifications can be satisfied by both FIR and IIR filters. IIR filters can generally
approximate frequency response specification using a lower order than the FIR filters. It is in
particular beneficial for filters that have short transition bands: by placing poles of the filter near
the unit circle we may obtain a sharp peak (the magnitude of the transfer function becomes very
large in the neighborhood of a poles).

In this thesis we only consider the implementation of the IIR filters, as a more general case.

The most common IIR design technique involves designing first an analog filter (a proto-
type) and then transforming it to a digital filter. This approach is popular because of the vast
literature available on the subject of analog filters. Usually, the method of choice is the bilinear
transformation [18] (based on the mapping of the analog plane into the digital plane) and impulse-
invariant methods (based on the sampling of the continuous time impulse response) [23]. For
piecewise-constant frequency band specifications, numerical approximation methods can be
used. For instance, the Remez exchange algorithm can be applied [24]. However, this method
can sometimes fail [25].

1.4.3 A key band specification example

To unify the demonstration of our algorithms, further in this thesis we will use the following key
example of frequency specifications of a simple but realistic enough lowpass filter:

+ sampling frequency F; = 48kHz
» passband up to 9.6kHz with amplitude in the interval from 0 to —1dB

+ stopband starting with 12kHz with amplitude bounded by —80dB

There exist infinite number of transfer functions that satisfy these specifications. For instance,
designing the transfer function using Elliptic method by Matlab yields an 8" order IIR filter® with
double precision coefficients® that are given in Table 1.1.

Figure 1.5a illustrates the magnitude response, and Figure 1.5b shows the position of poles
and zeros of this transfer function. We see that this filter has its poles very close to the unit circle,
the maximum distance from the unit circle is around 0.0199.

5Filter order determined with Matlab function ellipord
6 Attention: Matlab does not provide any information on the accuracy of the obtained coefficients.

18

1.5. FILTER STRUCTURES

b;,1=0,..8 a;j,1=1,...8
561579990219285 - 2757
2680202476681091 -2758 —8466075925097353 - 2751
2851083336434883-2757 144214293209393 - 2744
7945852418150609 - 2758 —834038461885399-2746
2285687050263807 - 2756 3470975327611749-2748
7945852418150609 - 2758 —5233992444458969 - 2749
5702166672869765 - 2758 2801619744602567 - 249
2680202476681091-2758 —-3922384851870119-2751
561579990219285 - 2757 5713945412302955 - 2754

Table 1.1: Coefficients of the elliptic filter satisfying the key specifications.

apoles
% 1f e -||@zeros
R e A\
(0] \
-g ’/, A ‘\
= of P
e \ A ,’
< .)
\\ A/
I I —1 - e -0 AA’ i -
0 9.612 24
Frequency, kHz 7‘1 6 1
(a) Magnitude response (b) Poles and zeros

Figure 1.5: The 8" order elliptic transfer function corresponding to the key specifications.

1.5 Filter Structures

In practice, an IIR filter can be evaluated with many different algorithms, we will further call them
“structures”. Each IIR structure is parametrized to evaluate any IIR filter. We will further refer to
the parameters of each structure as to its coefficients. Different structures have different number
of coefficients. The process of computation of the structure coefficients out of a filter (e.g. its
transfer function) is called the “realization of a filter with the structure”. Hence, we will call a
particular filter evaluated with a structure a “realization’”.

A convenient way of reflecting different computational flows is using the data-flow diagrams,
modeled with block diagrams. The basic building blocks for the description of LTI systems are
multipliers, adders and unit delays; symbols for them are shown on Figure 1.6.

19

CHAPTER 1. DIGITAL FILTERS

_q uk—1) u(k) au(k) ua (k) uy (k) + up(k)
>

Tul(k)

(a) delay (b) multiplication (c) addition

Figure 1.6: Basic blocks in linear block-diagrams

1.5.1 Direct Forms

A straightforward way to describe the evaluation of the transfer function (1.16) is shown in
Figure 1.7a and is called Direct Form | (DFI) structure. It has the same coefficients as the
filter’s transfer function H(z) and corresponds to the CCDE 1.11. By rearranging the structure
we can obtain Direct Form Il (DFII) as on Figure 1.7b. Through transposition of the data-flow
diagrams [18] we can obtain Direct Form | and Il transposed (DFIt and DFllt) as shown on
Figures 1.8a and 1.8b.

These structures are straightforward to design and implement since they use the coefficients
of the transfer function. For example, by simply replacing coefficients in 1.7a with the coefficients
of the elliptic transfer function from Table 1.1 we obtain a realization of the key lowpass filter with
the DFI structure.

For an evaluation of an n'" order filter they require 2n + 1 coefficients to be stored and used.
The major drawback is that they are very sensitive to finite-precision effects and low-precision
implementations often have extremely high error [18].

In order to overcome this drawback, another type of structure has been derived from transfer
function coefficients: decomposition into second-order sections. It is based on the partial fraction
expansion of the rational function H(z) into the terms of second order:

n/2| , o P
He) - [HW bo+b,z t+ bizz;‘

. [.
i=1 l+a; 27 +a,42

(1.19)

If we recall the properties of the convolution operator (Figure 1.2), such partial fraction expansion
corresponds to a cascade of [n/2] second-order filters.

Various approaches have been proposed on the improvement of second-order sections
behavior in finite precision [26—29]. In general, for a n" order filter such structures require 2n —1
additions, 2n multiplications and, storage for 2n + 1 coefficients.

20

1.5. FILTER STRUCTURES

u(k)

y(k)
0

y(k)
(a) Direct Form | (b) Direct Form Il
Figure 1.7: Direct Forms
u(k) tk+1) y(k)
D—? bo
TNt | 51 1| @ E k
i,;%{ n @ e
O <o+ f> 0
TN4i | 51 3 | @
| I b — —~ ;(;, if— # —»i\h? - —>\/\A |
ToN | 1 3 21| zN

1 ;

(a) Direct Form | transposed

(b) Direct Form Il transposed

Figure 1.8: Direct Forms transposed

21

CHAPTER 1. DIGITAL FILTERS

1.5.2 State-Space

Another common representation of IR filters is using state-space equations. State-space
structure permits to easily describe MIMO systems (i.e. input and output signals are vectors) and
comes from the theory of control systems. Its block-diagram is shown on Figure 1.9. Analytically
a state-space system # describes the evolution of the state vector x(%) that depends on x(% —1)
and the input vector w(%), while a new output vector y(k) is computed out of the current state
and the input. An n!" order state-space structure with ¢ inputs and p outputs is analytically
described with

Ax(k)+Bu(k)

, (1.20)
Cx(k)+Du(k)

x(k+1)
y(k)

where u(k) € R? is the input vector, y(k) € RP the output vector, x(k) € R” the state vector and
AeRY" BeR"™1, CeRP*" and D e RP*? are the state-space matrices of the system. In the
case of a SISO system, B and C are vectors, and D is a scalar, which will further be indicated
by appropriate notation b,¢ and d.

Figure 1.9: The State-Space structure

The matrix of transfer functions of the state-space system ./ is computed with
H(z)=D+C(zI-A)'B, zeC. (1.21)

Remark 1.3. /n the MIMO case H(z) is called a multidimensional transfer function, i.e. can be
seen as a p x g matrix containing p rational functions that share the same denumerator but
have different numerators (for each output of the system) [30].

The impulse response lh(k)’ of the MIMO system .# can be computed with

D, k=0

, 1.22
CA* 1B, k>0 (1.22)

h(k) = {

where each sample (k) is a p x ¢ matrix, and element lh; ;(k) is the response of the i output
to the impulse signal on the j input.

7Exceptional|y, we denote a matrix by a small case letter, for instance h.

22

1.5. FILTER STRUCTURES

The stability criterion of the state-space systems can be formulated as follows:

Property 1.1. (Bounded Input Bounded Output Stability) Let # be a state-space system. Sup-
pose an input signal {u(k)}r=q is known to be bounded by u (i.e. Vk =0, lu;j(k)|<a;,1<i<q).
So it holds that the output {y(k)}r>o is bounded iff the spectral radius p(A) is strictly less than 1.

See [31] for a proof.

A state-space structure can be easily obtained from the filter’s transfer function [32]. For
example, an n'" order SISO IIR filter described with a rational transfer function (1.16), the
state-space matrices can be computed with

—a1 1 b1—-aibo
A=| Cole=l 0 | e=(t 0o 0 d=b. (129

-a, 0 ... O b,—anby

The state-space systems described with the equations (1.23) are called state-space systems in
the canonical observable form [18, 32].

An advantage of the state-space systems is that we can perform a linear change of the state
variable coordinates, which is called a similarity transformation [33, 34]. Indeed, consider any
invertible matrix T' and perform a change x7(k) = Tx(k). Then, we can compute a transformed
system 7 with new coefficient matrices

Ar=T"'AT, Cr=CT,

(1.24)
Br=T"1B, Dr=D.

The transformed system describes the same system in new state-variable coordinates. It can be
verified that the transfer function has not changed [34].

Therefore, there exists infinitely many mathematically equivalent state-space realizations for
any recursive linear filter. The questions of choice of the best state-space realization have been
addressed in, namely, works of Gevers and Li [34].

1.5.3 Other structures

There is a huge variety of other structures and regularly more appear. Some of them are
based on analytical representation, like State-Space. Others, like Wave and Lattice structures,
whose coefficients are directly derived from analog filters, are analyzed by means of Signal
Flow Graph theory. This approach benefits from its proximity with the analog circuits. However,
the comparison issue arises from both theoretical (comparison of structures given in different

23

CHAPTER 1. DIGITAL FILTERS

representations) and practical (the designer should have a more or less deep knowledge of
numerous structures) points of view.

Regardless of the means of description, one of the most important considerations in the
performance evaluation of digital signal processing structures is sensitivity under finite-precision
arithmetic constraints. The topology (i.e. the placement of adders, multipliers, delays and data
paths) of the realization structures significantly influences the numerical quality, investigation of
which is in the heart of our work.

1.6 Conclusion

In this Chapter we have presented some basic notions of LTI IIR filters, their frequency and time
domain representations. There exist numerous computational algorithms, called structures, with
which we can compute the same filter. Filter structures can be described either in analytical
(recurrence equations, matrices) or in graphical way (block diagrams). They possess different set
of coefficients and can be even obtained without actually computing the filter’s transfer function.
Moreover, in further reading we should keep in mind that different structures call for different
analysis methods, which significantly complicates the designer’s job.

24

CHAPTER

COMPUTER ARITHMETIC

fficient representation of real numbers on electronic computers is not a straightforward
task. Since the early years of computer science, many different ways have been intro-
duced. While radix 10 is most convenient for the understanding by humans, most of the
computers are based on two-state logic. Therefore, radix-2 arithmetic is easiest to implement and
we focus only on such representations. In general, a real number is represented in the machine
with some finite number of digits, called precision. Finite-precision numbers form a subset of
real numbers and there exist different solutions for their hardware and software representation.
In this Chapter we present basic notions of two finite-precision representations: Floating-Point
and Fixed-Point. It appears that Floating-Point arithmetic (with well chosen parameters) is a very
good compromise for most numerical applications. However, it comes together with relatively
high cost (in terms of speed, power consumption, etc) that is often too high for embedded
microprocessors. In these cases, the faster and less power-hungry Fixed-Point arithmetic is
preferred.
Finally, we give a brief overview of finite-precision effects that occur during the implementa-
tion of digital filters on Fixed-Point processors.

Rounding and errors

On the one hand we have real numbers, and on the other hand we have a finite-precision
arithmetic, which describes a set of discretized values with a finite number of digits. Let F =R be
some set of finite-precision numbers. In order to represent a real number in F, we must apply
a rule which is called rounding. In general, rounding is the operation of replacing a numerical
value by another one which, usually, has a smaller number of digits in its representation. There
are many ways of rounding numbers:

» round-to-nearest: RN (x) € F is the finite-precision number that is closest to x. In the case
when x is exactly between to finite-precision numbers, a tie-braking rule must be used;

* round towards +oo (up): RU(x) € [is the smallest finite-precision number that is greater
than or equal to x;

25

CHAPTER 2. COMPUTER ARITHMETIC

* round towards —oo (down): RD(x) € F is the largest finite-precision number that is smaller
than or equal to x.

These ways are called rounding modes.
Suppose you compute some function in finite-precision

arithmetic. If the rounded result is the same as if the function RN(z) RU(z) RU(y)
RD RD RN

were computed in infinite precision and then rounded (once), @) ®))

then we say that the function is correctly rounded. If for an J] J] é7

exact result y one writes a finite-precision algorithm that oi "‘_I T | TI

always returns either RU(y) or RD(y), then the result is said w1777

finite-precision =~ & Y
to be faltth//y rounded. numbers

Obviously, rounding can lead to errors that are called Figure 2.1: lllustration of three

rounding errors. One of the goals of computer arithmetic rounding modes of real numbers

is to estimate the errors in computations when using finite- xand y.
precision arithmetic for algorithms. In the case when a se-
quence of numerical computations is subject to rounding operators, the errors may accumulate
and even dominate the calculation itself.
Denote by o(:) some rounding operator. When approximating a real non-zero number x by
o(x), the relative error [35] is defined by
_o(x)—x

Ox:= . (2.1)
x

Another type of measurement of error is the absolute error [35]:

Ax :=o(x) —x. (2.2)

Sources of Errors

In the following we will distinguish two sources of errors in numerical computations:

» Methodological errors: for example an infinite sum can be computed only by taking
some finite number of terms, and the omitted terms constitute the truncation error or
“methodological” error.

» Rounding errors that occur while working with finite precision arithmetic.

In this work, when doing the error-analysis of our algorithms, we rigorously account for both
sources of errors.

26

2.1. FIXED-POINT ARITHMETIC

om szl 20 271 2[
K m+1 K -0 A
KK w 2

Figure 2.2: Fixed-point representation (here, m =5 and ¢ = —4).

2.1 Fixed-Point Arithmetic

A radix-2 Fixed-Point (FxP) number system [36, 37] is a subset of real numbers whose elements
are integers scaled by a fixed factor and have form

+X -2, (2.3)

where X is an integer mantissa and 2¢ is an implicit quantization factor. Remark that the FxP
numbers are equally spaced by the quantization factor because it is fixed.

The power of FxP arithmetic comes from the fact that it is based on manipulation with
integers and bit-wise arithmetic. It is particularly well exploited in embedded systems that permit
small wordlengths and require high speed. However, the downside is that FxP representations
have a relatively limited range of values that they can represent.

However, no uniformly used standard exist and, as a drawback, no recognized systematic
overview nor unique notation of the FXP numbers exist either. Further in the thesis we consider
two’s complement Fixed-Point arithmetic [36—38], which we recall to the reader just below. We
refer the reader to the PhD thesis of B. Lopez [6] (in French) for a detailed description of the
format and notation that we adopt in this thesis.

2.1.1 Two’s-complement numbers

Two’s complement is a representation of signed numbers in integer arithmetic. Let ¢ be a signed

FxP number. It is written as)
m

t=—2"t,+ Y 2't;, (2.4)
i=f
where ¢; is the i bit of ¢, and m and ¢ are the Most Significant Bit (MSB) and Least Significant

Bit (LSB) positions of ¢ (see Figure 2.2) respectively. Denote by w the wordlength of a FxP
number. It is related with the MSB and LSB positions via

w=m-¥¢+1. (2.5)

A w bit FxP number ¢ in two’s-complement representation is stored as an integer mantissa
T e [-2¢~1;2@~1 _1]n Z scaled by the quantization factor 2¢.

27

CHAPTER 2. COMPUTER ARITHMETIC

The range of numbers that can be represented with the wordlength w and quantization factor ¢
is the interval [-2™;2™ —2¢], called dynamic range.

Remark 2.1. The dynamic range of two’s complement is asymmetric, which in certain cases
may complicate the conversion of a real number to FxP representation [39].

2.1.2 Conversion

Consider the following problem: given a real non-zero number' x € R and wordlength w, deter-
mine the best FxP format (m, ¢). Obviously, we are interested in finding the least possible MSB
position m. The least MSB position can be computed in the most cases with

_ { [logo(H)| +1 if£>0 26)

[logo(~)] ift<0

Once the MSB position is computed, we can directly determine the LSB ¢ = m —w + 1. Finally,
we can compute the value of the integer mantissa T' € Z with

T=t-279, (2.7)

where |-] denotes round to nearest integer operator. Then, the FxP counterpart # of the real
number ¢ is actually £ = T'-2¢ = [¢-27¢1-2°.

Remark 2.2. When converting a real number to FxP arithmetic we seek to have the least error
and usually can use round to nearest. In hardware, when converting a number from a larger
FxP format to a smaller one, another rounding mode can be used. To minimize the hardware
cost, truncation (understand “round-down”) is often used.

Example 2.1. Lett = v2 = 1.25992104989487316476721... and suppose we need to represent
it with w = 8 bits. Using the above approach we obtain the MSB m = |logy(V/2)| +1 =1 and
LSB ¢ =1-8+1=-6. Therefore, using a round-to-nearest integer operator, the actually stored
mantissa T = | V2-28] = 81 and the 8-bit FxP representation of t is { = 81-275 = 1.265625.

However, the MSB computation formula (2.6) is naive: the asymmetric dynamic range of the
two’s complement FxP arithmetic imposes limit cases that should be treated separately. We
refer the reader to [6, 39] for a systematic approach on treatment of such cases.

"For the zero any format is suitable.

28

2.1. FIXED-POINT ARITHMETIC

2.1.3 Overflows

When determining FxP formats for variables in a FxP algorithm we need to rigorously determine
the range of all variables involved in the computations. Otherwise, an overflow may occur, i.e. at
some point an integer mantissa exceeds its range [-2%~1;2%~1 —1]. Consider the example of a
FxP algorithm for a vector normalization.

Example 2.2. Lett =(125,125,125) be a vector in 3-dimensional space whose coordinates are
represented with the FxP format (15,—16). One can suppose that computing the length of t and
storing it in a variable h = V1252 + 1252 + 1252 = 216.5.... with the same format (15, —16) should
be enough. The problem is that the sum of those squares is equal to 46875 ¢ [-32768;32767],

i.e. it exceeds the dynamic range of the format (15,—16). Thus, a variable storing the intermediate
result with the sum of squares must have larger wordlengths.

Sometimes, determining a potential overflow is complicated. For example, the normalization will
work just fine on a lot of values: vector (100,100, 100) will be normalized just fine but the vector
(40,40,180) will not.

If careful investigation of the dynamic range of all variables is not possible, there exist several
mechanisms on dealing with the overflow: wrap-around mode [40], saturation to min/max [40],
etc. In digital signal processing, the saturation mode is widely used [40] because it prevents an
overflow from being turned into an abrupt change from very big positive to very big negative
values due to wrapping.

In saturation mode, overflow is dealt with by replacing the value that overflows by the largest
(smallest) representable value of the target format. Such technique requires additional hardware
support. Consider a number vy with FxP format (m 1, ¢) that needs to be represented with a
“smaller” FxP format (mq,), m1 > mg. Then, the saturated value vg is

om2 — 20 ifyy =2m2 —2f
vg =4 -—2™M2 if v < —2™m2 . (2.8)
U1 otherwise

Computations performed with the saturation technique may give an impression to be correct
if the saturated values yielded a small overflow (in sense of the absolute value). However, in
general such a suppression of the values significantly changes the accuracy of the result.

In this thesis we advocate rigorous evaluation of the range of all variables involved in a FxP
implementation. Our implementations will not use saturation or other similar techniques since
we will give a guarantee (based on mathematical proofs) that no overflow occurs.

29

CHAPTER 2. COMPUTER ARITHMETIC

2.1.4 AQuantization and computational errors

We have already seen that in general rounding errors occur during the conversion of a real
(exact) number to some FxP format. Further we will refer to the rounding errors of coefficients of
the filter as quantization errors. Bounds on the quantization errors can be deduced with respect
to the quantization step and rounding mode.

Consider a real number ¢ € R that is represented in FxP with format (m, ¢). Denote by At
the quantization error between ¢ and its FxP approximation #: At = —t. The bounds on At for
different rounding modes are summarized [6] in Table 2.1.

Rounding mode ‘ Error bound
round-to-nearest —20-1 < A <2071
truncation 0<At<2f
faithful 20 <At <2f

Table 2.1: Error bounds for quantization errors according to the rounding mode.

Apart from the quantization errors, in the general case computational errors are induced
after every arithmetic operation on FxP numbers. Usually, in the computational units the result of
intermediate operations is stored with larger precision and then rounded to the initial precision.
The errors due to this rounding can propagate and be significantly amplified.

Example 2.3. Let ¢ be some number rounded to FxP format (m.,¥¢.) and lett be a variable
(exact quantity) in FxP format (m,¢;). The product of these two numbers can be exactly
representable on w. + w; bits.

Suppose the rounding error Ac is bounded in its absolute value |Ac| < 2¢. In other words, the
last bit of ¢ is potentially erroneous. Then, by using the classic long multiplication method we
may remark that this potentially false bit will propagate through the multiplication in such way
that the last w; — 1 bits of the product become potentially false, too. Therefore, we obtain that
the error between the exact product c -t and ¢ ® t (here ® means FxP product) is bounded in
absolute value by 2%+ 71,

When implementing FxP algorithms, the classic problem is to estimate an upper bound on the
error of some operation, given the formats of the operands. However, during the implementation
of digital filters we will look at this problem in another way: given the required upper bound on
the output error, determine the least formats of the operands that guarantee this error.

The reader may have noted that filter structures (e.g. state-space) are often based on
the computation of Sums-of-Products by Constants (SOPCs). To ensure some properties of
the implemented filters we need to define how these Sums of Products are computed in FxP

30

2.2. FLOATING-POINT ARITHMETIC

|:s§|| [TTT 1T

E 1 8 8 8
BEYTT]TTT1
|

S

[
[
[TTT T T T
I Y R

K— 8 —
1
1

Figure 2.3: The sum is first performed with extended format and then rounded.

arithmetic. Further in this thesis we will rely on the following result presented and proved
in [6, 41, 42].

Proposition 2.1 (Faithfully rounded Sums-of-Products). Let ci,co,...,c, be some quantized

FxP numbers with respective formats (m¢,,¢.,) andti,ts,...,t, be FxP variables with respective
n
formats (m.,,¢+,). Suppose we need to compute the SOPC S = ¥ c¢;t; in FxP arithmetic and

i=1
represent the output in the format (mg,) (and we know that there will be no overflow). Then if

* the results of FxP multiplications are stored onw., +w;, bits, and

- the sum is performed on the extended by g guard bits FxP format® (ms,¢s — g), where
g = |logy(n)| +1, and then rounded to the final format (ms,¢) (see Figure 2.3)

we can guarantee that the FxP result is a faithful rounding of the exact sum of product, i.e. the
absolute error is bounded by 2.

2.2 Floating-Point Arithmetic

The Floating-Point (FP) number system is another way of describing numbers in computers.
The concept is adapted from the scientific number notation. In 1985 the IEEE published the
IEEE-754 standard for Binary Floating-Point Arithmetic which is nowadays supported in the vast
majority of systems.

A key feature of the FP notation is that the represented numbers are not uniformly spaced:
it is ensured that there are small gaps between small numbers and large gaps between large
numbers. In comparison with Fixed-Point Arithmetic, FP has a larger dynamic range. According

2All bits to the right of £; — g can be truncated.

31

CHAPTER 2. COMPUTER ARITHMETIC

to studies [43, 44] FP implementations of digital filters yield much less error to the output®.
However, the manufacturing cost dictates the use of cheaper, smaller and less power-hungry
Fixed-Point processors.

We use Floating-Point arithmetic as our main instrument for computation of optimal imple-
mentation parameters, accurate evaluation of FxP implementation errors, etc. Therefore, in this
section we present a small overview of the IEEE 754-2008 Floating Point Standard [45] and,
since FP computations are not exact, the general idea of the FP error analysis techniques that
we will use.

We refer the reader to the Handbook of Floating-Point Arithmetic by Muller et al. [35] for a
detailed and formal reference on the general subject of FP arithmetic. As well as to a guide into
Accuracy and Stability of Numerical Algorithms [46] by Higham.

2.2.1 Normalized IEEE 754 Binary Floating-Point

The 2008 version of the IEEE standard supports radix-2 and radix-10 systems. In this thesis we
consider only radix-2 floating-point numbers. According to the standard, a radix-2 FP number is

written as:
x=(-1)°-m-2°, (2.9)
where

* se€{0,1} is the sign bit
+ the exponent e € [enin, emax], With emin and emax specified for each standard format;

» the mantissa m is represented with p bits (p defined by the standard for each format) is
normalized to the form 1.m1ms...m,_1. In other words, only p — 1 trailing mantissa bits
are stored.

In contrast to Fixed-Point Arithmetic, the exponent is stored explicitly along with the mantissa
and is not fixed (thus the name, “floating-point”). The actual exponent e is biased in order to
be stored as a positive integer: an exponent stored on w bits is biased by b =2¥~1 —1. The
smallest positive normal* number is 2°m. The largest finite binary floating-point number is
(2-217P).2¢max Numbers |x| < 2¢m are called subnormal numbers and not all systems support
them. In this work we do not consider sub-normal numbers.

SHowever, to our knowledge, similar to the case of FxP implementations, no systematic studies of implementation
errors has been performed for FP filter implementations either.
4i.e. with mantissa m having the first bit set to 1

32

2.2. FLOATING-POINT ARITHMETIC

In IEEE format, both +0 and —0 exist, along with signed infinities and "Not a Number data",
shortly NaNs, which are returned in case of invalid operations.

The IEEE 754 standard dictates several formats, i.e. standard couples of parameters p and
w, and we are going to use two of them: double and single. The double precision format has a
11-bit exponent and mantissa with 53 bits of precision. The single precision format has a 8-bit
exponent and mantissa with 24 bits of precision.

2.2.2 Conversion

Obviously, a real number might be not exactly representable as a FP number. This is mainly
due to two reasons: (i) the number lies strictly between two consecutive floating-point numbers;
(ii) number is out of range, i.e. its absolute value is larger than 2¢max or smaller than 2émin (if
subnormals are supported, the bound for complete underflow is 2¢min=P),

The relative error due to rounding is given by the unit roundoff [46]: u = 27P. It can be proved
that if a real number x € R lies in range of the radix-2 FP format with precision p, then

o(x)=x(1+6), I6l=su, u=27P, (2.10)
where o(-) is the round to nearest operator®.

Example 2.4. Consider the single precision format: the exponent is stored on 8 bits and the
mantissa on 23 bits. Suppose we wish to represent x = /5 in this format. Binary representation
of x will be

10.0011110001101110111100110111001011111110100101001...9 (2.11)

After normalization of the mantissa the non-biased exponent is equal to 1. We compute the
biased exponent e by adding the bias equal to 127, therefore e = 128. Also, for a representation
with 23 bits, we round it with the round-to-nearest operator. Therefore, a single precision FP
approximation of x is:

(ol1[o[o[ofo[ololololofof1l1l1]1]ololof1[1fof1(1]1Tol1[1[1[1]0]1]
<«<—>< >

sign exponent mantissa

The relative error is indeed bounded by the unit roundoff: we obtain that § =1.1111100001...o -

2727 while for single precision u = 2724

5The actual bound is more complicated and depends on the rounding operator

33

CHAPTER 2. COMPUTER ARITHMETIC

2.2.3 Rounding errors

Any result of a finite precision computation is susceptible to rounding errors. Sometimes rounding
can be beneficial: rounding errors can cancel in certain algorithms and lead to a final result that
is more accurate than intermediate results [46]. However, usually we refer to rounding errors
as to an undesirable effect and want to ensure relative and absolute error bounds on the result
of a computation. An important remark is that rounding errors are not random. Using Kahan'’s
examples Higham demonstrated [46] that rounding errors may have a strikingly regular pattern.
Thus, modeling the rounding errors with random noise [47] can be readily argued with.

A widely used model [46] for the errors of FP operations over two FP normal numbers x and
y can be expressed as (in the absence of under- and overflows and with round-to-nearest):

o(xopy)=(xopy)-(1+98), |6l<su, op={+—,-/} (2.12)

For the ease of the notation we will often use circled signs of arithmetic operations &,6,® to
denote FP additions, subtraction and multiplication.

However, when operands of arithmetic operations have themselves been subjects to previous
rounding, catastrophic loss of significant digits can happen. This undesirable effect of rounding
errors can be demonstrated with the catastrophic cancellation: subtraction of two nearly equal
numbers can cause many of the accurate digits to disappear.

Example 2.5 (Cancellation). Consider the cosh™! function that is computed with cosh™(x) =
—log (x - Va2 - 1). Here, when x is large, the rounding that occurs in the square root compu-
tation leads to vVx2 — 1 = x and, subsequently, to invalid logarithm computation. For example,

cosh™1(1019) =~ 23.71899... but in double precision it evaluates to —co. This occurred because
o(v/1020 — 1) evaluated to 101°.

While for basic arithmetic operations correct rounding can be easily guaranteed [48], for
more complicated operations and algorithms, correct rounding is difficult (or impossible) to
obtain [35, 49]. For some mathematical functions there exist solutions such as correctly rounded
library CRIibm® [50-53]. Another solution is Sollya which is both a tool and a library [53, 54].
Finally, code for correctly rounded elementary functions can be generated using Metalibm [55]
code generator tool.

However, for an arbitrary numerical algorithm we are interested in ways to avoid effects
such as cancellation, and determine a relative or absolute error bound on the output of an
algorithm. In our contributions we will provide rigorous bounds on the computational errors (and
their propagation) that occur in implementations of all the algorithms. We will often bound the
errors with respect to some norm, such as the Frobenius norm.

6https ://scm.gforge.inria.fr/anonscm/git/metalibm/crlibm.git

34

https://scm.gforge.inria.fr/anonscm/git/metalibm/crlibm.git

2.2. FLOATING-POINT ARITHMETIC

2.2.4 Multiple Precision Arithmetic

Sometimes bounding the error of our implementation will not suffice: the error bound may be
relatively small but still too large in its absolute value. This usually means that the precision of
intermediate computations must be increased.

There exist quite a few solutions for extending the precision of computations: the IEEE 754
standard proposes a few large and a few extended formats; exact arithmetic (rational numbers,
continued fractions, etc.); the super-accumulator of Kulisch [56]; floating-point expansions [57];
multiple precision arithmetic [58, 59], etc.

In our algorithms we will need to change the precision dynamically and non-homogeneously
(i.e. different variables may have different precision). To satisfy these requirements, we use
Multiple Precision (MP) floating-point arithmetic. In particular, we are going to use GNU MPFR
library [59] for our implementations.

We will often refer to some outputs of algorithms as being computed with a priori error bound.
In fact, what we understand by this is that given a bound on the error, the algorithm dynamically
adapts the precision of internal computations such that the computational errors are not larger
than the given error bound and the output of the algorithm is returned as a multiple precision
number. In such algorithms we will take care not to overestimate the required internal precision.

2.2.5 Interval Arithmetic

Another way to deal with the uncertainties and rounding errors in the computations is Interval
Arithmetic. The term “interval arithmetic” dates from the 1950s due to works of Moore [60]. We
refer the reader to [61—63] for a detailed overview of interval arithmetic.

An interval, denoted [x] = [x,x], is a closed and bounded nonempty interval:

[x]:[&,f] ={x€|R|£SxS§}, (2.13)

where x and x are called lower and upper bounds respectively and x < x. In the case x = x, we
will call [x] a point-interval. Sometimes, we will use the mid-rad representation of an interval:

[x] = (xXm,xr), (2.14)

where x,, = E% is the midpoint and x, = E% is the radius of the interval.

When we compute a function f : R — R on the interval argument [x] = I, we seek to
determine the intervals around the output [y] =</ such that V x € I, f(x) € J. This property is
called inclusion property and while it does not help finding the exact output, it gives a guarantee
that the computed interval contains the exact result. All basic arithmetic operations are defined
for intervals and are based on the inclusion property.

35

CHAPTER 2. COMPUTER ARITHMETIC

The main problem related to the naive use of interval arithmetic is the phenomenon of
decorrelation, a.k.a. dependency problem. This is due to the fact that interval arithmetic cannot
trace the correlation between multiple occurrences of the same variable. Consider an example
of expression y = 5. For [x] =[4,9], the output [y] should be an interval [0.8,0.9]. However,
using interval evaluation, we obtain the result [0.4,1.8] which is much larger than the expected
result. To avoid such situations, rewriting techniques are usually used [64]. For instance, y = 1%1
yields a much smaller interval [0.8,0.9] for [x] =[4,9].

Intervals are often used to account for rounding errors in the computations. When a compu-
tation with intervals yields a result [y], its midpoint y,, is viewed as an approximate value for the
result with a worst-case error y,. Even if a result interval is too wide to be practically useful, it
can at least ensure a fail-safe mode of operation.

Practical implementations of interval arithmetic are often based on multiple precision FP
arithmetic, i.e. [x,x] = {x e Rlx <x <X,x,x € F,}, where F,, denotes a set of FP numbers with
precision p. All operations on the endpoints must be done with care: to ensure the inclusion
property, rounding must be done to wrap up around the exact result. In this thesis we are going
to use the multiple precision floating-point interval liorary GNU MPFI [65, 66] for all interval
operations.

In Part Ill, sometimes, we are going to use the Theory of Verified Inclusions developed by
Rump [67—-69] to account for errors of some linear algebra routines. In his approach, Rump
addresses error bounds on the solution of some common numerical algorithms, such as eigen-
decomposition problems. He shows how we can easily deduce tight intervals of the solutions
of these problems. These intervals are guaranteed to contain the exact results. We are going
to use this approach to find interval enclosures for some algorithms that do not provide any
rigorous error bounds, such as eigendecomposition, solution of linear system of equations and
matrix inverse.

2.3 Finite Precision Effects for lIR filters

Before actually implementing IIR filters, we need to ascertain the extend to which its performance
will be degraded by finite-precision effects. And, if the degradation is not acceptable, find a
solution. Usually, the output error of the filter can be reduced by increasing the precision of
computations and of the filter’s coefficients but at the expense of an increased cost.

The filter degradation in both software and hardware depends on three main factors:

+ quantization of the filter’s coefficients,
+ specification of arithmetic and wordlengths and

» structure, i.e. algorithm for the evaluation of the filter.

36

2.3. FINITE PRECISION EFFECTS FOR IIR FILTERS

—— DFIIt FxP 12 bits
SS FxP 12 bits

o pDFIIt FxP 12 bits

z —— initial transfer function
3

=

IS

(@]

©

=

_3 I N
0 0.1 0.2 0.3 0.4

Normalized frequency (w x)

Figure 2.4: Quantization effects on the DFIIt, pDFIIt and balanced State-Space systems

2.3.1 Coefficient quantization

Quantization of the coefficients to a finite number of bits essentially changes the filter coefficients,
hence the frequency response changes as well. Quantization of the coefficients can easily yield
an unstable filter. Different realizations usually demonstrate different behavior due to coefficient
quantization.

Consider the key example of band specifications and corresponding transfer function pre-
sented in Chapter 1 Section 1.4.3. For instance, in the passband, i.e. for frequencies w € [0,0.4x],
the magnitude response of the filter must be between 0dB and —1dB.

Even without considerations on the FxP arithmetic (wordlengths of variables, specifications
of arithmetic units, etc.), it is possible to observe how realizations obtained with different
structures behave under coefficient quantizations. Consider three filter structures: Direct Form |l
transposed (DFIIt), balanced state space’ and Direct Form Il transposed implemented with p
operator [70, 71].

On Figure 2.4 we can observe the magnitude response (in the passband) of the realizations
obtained with the above structures and whose coefficients were quantized to 12 bits. It is clear
that the majority of the realizations yields filters that do not respect the initial specifications
anymore. However, the poles of each realization are still in the unit circle. Now, if we quantize
the coefficients to 8 bits, poles of majority of realizations are out of the unit circle (Figure 2.5).
This is all to say that quantization can yield an unstable filter and even if poles are in the unit
circle, propagation of quantization errors may result in a filter that no longer respects the initial
frequency specifications.

’As returned by the Matlab’s function ss, which applies several similarity transformations upon the canonical
controllable form

37

CHAPTER 2. COMPUTER ARITHMETIC

+ DFIIt FxP 8 bits
1l e | |~ pDFIIt FxP 8 bits
/,’//’ :AQ[}(]\\\\ .SSFXP8b|tS
1 SR oinitial transfer function
// : * \\
! ! [®] \
0 b RERE—— |
\ : o /
\\ I ¢ ,/
\\\ : D‘ /‘/
~ o A e ///
—1t \\~~___—DQQA i
-1 0 1

Figure 2.5: Pole locations for the initial system, DFIIt, rhoDFIIt and balanced State-Space
quantized to 8 bits

2.3.2 Sensitivity analysis

Since it is desirable to predict the behavior of filter realizations prior to actually implementing
them, a statistical approach is classically used. The idea is to compute sensitivity measures [72—
74]: these measures are based on the sensitivity of the filter (its transfer function, poles, zeros,
etc.) with respect to the coefficient quantization, i.e. they show how much small perturbations
in the coefficients (or poles) of the filter may influence the behavior of transfer function. The
first works in this direction were proposed by Tavsanoglu and Thiele [75]. An analytical form for
such sensitivity measures should be derived for each structure separately. Further, if we work
with state-space systems, we may seek for a similarity transformation that minimizes the overall
sensitivity of the structure (with respect to £9-norm) [34, 74, 76].

However, this approach has several drawbacks: first of all, sensitivity measures can be
derived only for some family of structures, and second, they do not reflect the real impact of
quantization but just serve as an indication.

2.3.3 Roundoff noise and Fixed-Point Formats

To model the propagation of rounding errors the following model (see Figure 2.6) is usually used:
thanks to the linearity of the systems, an implemented filter #< is represented as a sum of the
exact filter # and a special error-filter AA. This error-filter is not actually implemented and is
only used to analyze the propagation of the computational errors (%) that are considered as
some noise signals.

38

2.3. FINITE PRECISION EFFECTS FOR IIR FILTERS

u(k) y(k)

—»| #
E%j ¥O k)
| A

5(13)—» NS

Ae(k)

Figure 2.6: Classic decomposition of the implemented filter.

We can observe that this model indeed makes sense using our key filter example. Suppose
we implement this filter with the Direct Form Il structure. We represent all variables in the
computational algorithm with 16 bits and on each iteration of the filter we guarantee correct
rounding. Then, for some particular input signal u(%) we can compute the difference 4 — #°
between the exact filter (computed with rational arithmetic) and the implemented filter as shown
on the Figure 2.7a. On Figure 2.7b we can observe that the output (%) of the difference filter in
response to the impulse signal u(k) resembles some noise.

107°
5 - |
= !
S
4
k o(k
u(k) (k) | |
0 0 20 40 60 80 100
S
k
(a) Difference of two filters (b) Output 6(k) in response to the impulse input.

Figure 2.7: Demonstration of the classic error-model.

Hence, not surprisingly, in classical signal processing, absolute errors are considered not as
small intervals but as white noise signals [77]. Then, using the classic error-model, the output of
the error filter is analyzed in terms of its mean and variance [78, 79]. We should remark that
such an approach does not very well reflect the reality: as we said previously rounding errors
are not random and the variance of the error does not provide an accurate perception of the
implementation errors.

39

CHAPTER 2. COMPUTER ARITHMETIC

Dynamic range of variables The dynamic range of the filter’s output is usually computed
with simulations [80]. The idea is to: (i) perform simulations using a set of some “relevant” inputs;
(i) determine the range of each variable from these simulations; (iii) enlarge the ranges by some

margin and take them as true ranges; (iv) cross fingers and hope that the inputs were “relevant
enough. Obviously, such approach is time-consuming and not reliable.

An improved approach is based on the following technique: (i) compute the probability
distribution function of the outputs of the filter; (ii) determine the interval which contains all
possible outputs, with some high-enough (obviously not 100%) probability; (iii) take this interval
as the range of the filter's output [77]. Then, the Fixed-Point formats are determined from the
dynamic range. Obviously, there is some probability that the range was underestimated and
overflow might occur.

Often intermediate results in filter computation are forced to saturate rather than overflow.
Implementations with saturation cannot be rigorously analyzed in terms of the rounding error:
from simulations we cannot predict how far the saturated values were out of range and what
is their influence on the filter's output. On top of that, we cannot use some properties of two’s
complement modular arithmetic that greatly simplify the additions and multiplications. These
properties are also called Jackson’s rule [81] which states that in sequence of additions in two’s
complement arithmetic certain intermediate results may overflow from the final format. However,
if the result is representable in the final format, the result is valid.

Influence of rounding errors Usually, an a posteriori idea on the behavior of computational
errors in linear filters is obtained via bit-true simulation [80, 82] of the FxP implementation and
then comparison with a reference (floating-point) simulation. For instance, the difference filter
shown on Figure 2.7a is used in extensive simulations to “oound” the implementation error. The
advantage of this technique is that it can be applied to any realization. An obvious drawback is
that simulations may not be exhaustive and comparison is not done with an exact filter but with a
finite-precision evaluation. Thus, no guarantee on the result can be obtained with this approach.
Moreover, simulations may take significant time [83].

Yet another solution is to apply analytical approaches once a mathematical expression of a
numerical accuracy metric is determined. For example, using Interval Arithmetic [84, 85] and
Affine Arithmetic [86—89]. These approaches are rigorous but they are prone to overestimations
and are not well suited for recursive systems (intervals will just explode due to the decorrellation
issue). There are some analytical approaches based on the noise propagation models [90, 91]
or on the probability density function [92, 93]. However, these approaches do not provide a
guarantee on the output error.

40

2.4. CONCLUSION

2.4 Conclusion

In this Chapter we have seen a very short overview of two ways to represent real numbers
in finite-precision: Fixed- and Floating-Point Arithmetic. The first one is used in practical filter
implementations due to its low cost while the second one is used during the design and analysis
of the implementation.

The key problem with the existing approaches on filter error-analysis is that they are not
suitable when a rigorous and optimal filter implementation is required. As far as we know, there
exist no method that provides a rigorous and tight bound on the error of the implementation.
Hence, for a reliable implementation we need to

+ guarantee that no overflow occurs during the computations and
* provide a rigorous bound on the output error of a Fixed-Point implementation.

Moreover, the methodology must not depend on the filter evaluation algorithm and be applicable
to any LTI filter realization.

41

CHAPTER

TOWARDS RELIABLE IMPLEMENTATION OF DIGITAL FILTERS

he question of automation of filter implementation is, obviously, not new. Frameworks

for semi- or fully automatic filter implementation have been developed over time [1-3].

Almost every big manufacturer along with a dedicated hardware provides a tool whose
goal is to help the designers. There is also the Matlab Simulink tool that helps the filter designers
and proposes various toolboxes.

The drawbacks vary from one tool to other but the general idea is: there exists no tool that
can implement an arbitrary realization and there is no guarantee on the implementation. Still a
lot of decisions in the implementations depend on the designer. Often these decisions require
high degree of expertise and a considerable amount of man-hours for the implementation.

To overcome these drawbacks a reliable filter code generation tool has been proposed [4, 6,
94, 95]. The foundation of its ideology can be expressed as four principles:

« all filter structures must be represented in a unified way

« all filter structures must be analyzed using the same criteria to enable fair comparison
+ Fixed-Point implementations must be reliable, i.e. guarantee that no overflow occurs

« all implementations must come with a rigorous bound on the implementation error

Our goal is to provide the kernel methodology for this generator, improve and extend existing
functionalities. In this chapter we give a brief overview of the tool before this thesis.

3.1 Automatic Filter Code Generator

Automatic Filter Code Generator is a software solution the goal of which is to provide tools for
reliable implementation of digital filters. It is based on the unification of existing approaches under
a same notation, as well as on development of novel approaches for software and hardware
implementation of filters.

One key feature that enables such a solution is the unification of representations of digital
filters. In his PhD thesis [4], Hilaire developed a new formalism, called the Specialized Implicit

43

CHAPTER 3. TOWARDS RELIABLE IMPLEMENTATION OF DIGITAL FILTERS

Stage 1 Stage 2 Stage 3 Stage 4
: : : . Code generation
SIF, | Quality analysis | SIF Fixed-Point | SIF ——

a priori settings VHDL
priort "9 ASICs

Figure 3.1: Automatic Filter Code Generator scheme before this thesis.

Form (SIF)" that can describe any linear filter (both FIR and IIR). It is an analytical representation,
based on an extended state-space structure and will be addressed in Section 3.2. Roughly,
the idea is to detail the way the computations are carried out (like in data-flows or algorithms)
but to keep a matrix-based description based on a state-space structure. Its resemblance with
the state-space systems rewards SIF with many useful properties. Therefore, the filter design
and implementation process can be unified for this representation and then applied upon any
realization of a LTl filter.

A simplified scheme of the generator work-flow is given in Figure 3.1. The process starts
with a given transfer function? and proceeds to the hardware or software implementation. The
filter-to-code generation is divided into four stages:

Stage 1: Given the coefficients of the transfer function we first represent it with SIF. Potentially,
any structure describing a linear filter can be expressed with the SIF formalism. Algorithms for
representations of several classical structures have been already proposed [4]. Thus, the user
just needs to choose from a set of possibilities and run a conversion algorithm which returns a
SIF that corresponds to a realization of the given transfer function with the desired structure.
However, support of a new structure requires a new conversion algorithm.

Stage 2: For a chosen structure, we can compute various classical (for control systems) and
new sensitivity measures [96]. These measures were directly derived for SIF matrices. Thus,
using direct formulas one can compute sensitivity measures for structures that used to have
only block-graph representation. These algorithms are implemented in Matlab as the Finite
Wordlength Realization toolbox® [97].

Stage 3: For a chosen structure, we determine the parameters of Fixed-Point implementation.
Given wordlength constraints (not necessarily the same for all variables), determine the position
of the binary point for each constant coefficient and variable. In his thesis [6], Lopez proposed

TSometimes in this thesis under “an instance of SIF” or even “a SIF’ we will actually understand “a filter in SIF
representation”.
2|n this generator, the questions of the design of transfer functions are not addressed.

Ssvn://scm.gforge.inria.fr/svnroot/furtoolbox/

44

svn://scm.gforge.inria.fr/svnroot/fwrtoolbox/

3.2. SPECIALIZED IMPLICIT FORM

conversion of structure’s coefficients to FxP arithmetic by taking into account special limit
cases. However, the dynamic range of the variables involved in the evaluation of a filter is still
not determined reliably. The output interval for all variables is computed using deterministic
measures, however still no guarantee is provided on the FxP implementation or the bound
on the output error. It is easy to show that the basic bricks of linear filters are Sums-of-
Products. Lopez proposed algorithms for the optimal (with area and error constraints) binary
tree decomposition of operations in these Sums-of-Products.

Stage 4: Given the parameters of Fixed-Point implementation, we generate software and
hardware code. Generation of C Floating- and Fixed-Point code is available. Hardware imple-
mentation on ASICs* using Lopez’s Sums-of-Products is possible. However, no other targets,
such as Field Programmable Gate Arrays, are supported. Moreover, Lopez’s algorithms are
based on non-rigorous dynamic range of Fixed-Point variables.

We see that while the main structure of the code generator is defined, it misses numerous
basic bricks and could take advantage of several improvements of existing functionalities.
Moreover, before this thesis some parts of the generator were implemented in Matlab while
others were written in Python.

In the following we give a brief overview of the Specialized Implicit Form and its functionalities.
For a full description, we refer the reader to [4, 6].

3.2 Specialized Implicit Form

The idea behind the Specialized Implicit Form is that for any structure it is not complicated to
determine the state variables (those that are saved from one iteration to another) and to reflect
the order of computations (additions and multiplications) in matrix form. Then, we can say that
any MIMO LTI system is characterized by the input u, output v, state x (for IIR systems) and
temporary ¢ vectors:

J 0 0)\(tk+1) 0 M N\[#k)
-K I, O||xk+D]|=|0 P Q|| (8.1)
-L 0 I, y(k) 0 R S)\uk)

where

» u(k) represents the g inputs, and y(%) the p outputs;

» x(k + 1) represents the n states stored at step %;

4Application—Specific Integrated Circuits

45

CHAPTER 3. TOWARDS RELIABLE IMPLEMENTATION OF DIGITAL FILTERS

» #(k + 1) represents the [intermediate variables in the calculations of step & (intermediate
values that are used only on step % but not stored form one step to another like the states);

e JeRX, KeR™ L eRP MecR*, NeR>*, PecRV, QcR'™, R eRP",

S € RP*4 gre coefficient matrices;

» by construction, the matrix o is lower triangular with 1 on the diagonal and denotes the
order of computations for a structure.

The diagonal matrix on the left side of the implicit equation (3.1) allows us to describe
the sequence of computations within a filter. For example, let y — mo(M 1u) be computed as
t — Miu and then y — mat. So this sequence is described as

(—;2 (1)) (;) } (Agl) “ (3.2)

Coefficients of a filter described with (3.1) can be regrouped into a matrix Z:

M N
z::(KPQ). (3.3)

,,,,,,,,,,,,,,,,,

The minus signs “="in (3.1) and (3.3) are used as a simple convention that simplifies derivation
of certain sensitivity measures for SIF.

Matrix Z has a sparse nature, and possesses either trivial coefficients such as 0, 1, —1 and
+2" (n > 0) or non-trivial coefficients that correspond to the coefficients of the structure that is
described with the SIF.

The computations associated to (3.1) are ordered from top to bottom, associated in a one to
one manner to the following system of equations:

Jt(k+1) Mx(k) + Nu(k)
xk+1) = Kt(k+1) + Px(k) + Qu(k) . (3.4)
y(&) Ltk+1) + Rx(k) + Su(k)

Let J' = J —I. Then the first line in (3.4) will be

(' + 1)tk +1) = Mx(k) + Nu(k) (3.5)
tk+1)= -tk + 1)+ Mx(k) + Nu(k). (3.6)

We obtain that vector ¢ depends on itself. However, this is not a problem since ' is strictly lower
triangular and the computation of i element of the temporary vector #;(% + 1) depends only on
t;(k +1) with j <i. This substitution will be useful further in this thesis.

46

3.2. SPECIALIZED IMPLICIT FORM

State-Space

Specialized \«
Implicit
Form

Figure 3.2: Conversion possibilities between SIF and other filter representations. Straight lines
denote exact transformations, dotted lines denote error-prone computations.

3.2.1 SIF, State-Space and Transfer Function

Any LTI structures can be described with SIF. For instance, for any state-space system
x(k+1) Ax(k)+Bu(k)
y(k) Cx(k)+Du(k)

the equivalent SIF is given with P =A,Q =B,R =C,S =D where J,K,L,M,N are empty
matrices, as a state-space structure has no temporary variables (I = 0).

(3.7)

Conversely, any SIF {J,K,...S} is equivalent in infinite precision to a state-space filter (3.7)
with:
A = KJ'M+P, B
C = LI'M+R, D

KJ IN+Q,
LJ IN+S.

(3.8)

This transformation to the state-space structure often helps to simplify the analysis of SIF.
Moreover, it serves to compute the transfer function that corresponds to a filter described with
SIF: once a filter described with SIF is transformed to a state-space using (3.8), we can apply
classical formula

H(z)=D+C(zI-A)'B (3.9)

and compute the transfer function matrix. Thus, we can determine the frequency domain
representation of a filter.

However, an accuracy issue arises: the computations in both (3.8) and (3.9) are generally
not performed exactly, and in some cases their naive floating-point evaluation may yield to
significant roundoff errors. Thus, the computed transfer function may not exactly correspond to
the initial structure. We will address this issue in our contributions in Chapter 5.

The possibilities of conversions between SIF and filter structures before our work are
illustrated on Figure 3.2.

47

CHAPTER 3. TOWARDS RELIABLE IMPLEMENTATION OF DIGITAL FILTERS

t=1vya
—» Ay —y> S >
UuA ug =1 YB

Figure 3.3: Simple cascade using SIF

3.2.2 Cascades of SIF

Consider two systems: A4 = {J4,K4,...,S4} with inputs us and outputs y4; and #p =
{JB,Kp,...,Sp} with inputs up and outputs yp. If the size of y4 is equal to the size of up, then
the systems can be cascaded, i.e. the outputs of the first system are reconnected with inputs of
the second system.

Using SIF, this classic cascade can be done by adding a new temporary vector #(k + 1) := y4(k),
and then replacing everywhere up(k) by t(k + 1). In other words, the outputs of the system #4
and inputs of /g will pass to the temporary variable. This process is illustrated on Figure 3.3. By
writing corresponding SIF equations (we refer the reader to [4, 98] for a step-by-step description)
we can obtain that a cascaded SIF has the following coefficient matrix:

—Js 0 0 My O NA
L, -I 0 Ry, O Sa
_| .9 Np -Jp 0 Mg 0
Zc= K0 0 P, 0 N (3.10)
0 @z K 0 Pp L0
"0 Sgp Lz i 0 Rzi o0

We refer the reader to [4, 98] for more detailed description of SIF properties.

3.3 Conclusion

Considerable amount of work was done in the foundation and development of a reliable automatic
filter code generator. However, the current generator still lacks its kernel functionality for the
reliable implementation in FxP Arithmetic. Some work should be done towards a better way
to represent any structure with the SIF. In the following, we are going to seek to improve the
generator, extend its functionalities and provide kernel algorithms for the reliable implementation
of linear filters in the FxP Arithmetic. On top of that, we aim at providing a single tool that
incorporates all stages of the generator.

48

PART II

IMPROVEMENTS TO THE
SPECIALIZED IMPLICIT FORM

49

CHAPTER

SPECIALIZED IMPLICIT FORM FOR
LATTICE WAVE DIGITAL FILTERS

o improve and further develop the functionalities of the unifying framework, we started

by describing a new structure with the Specialized Implicit Form (SIF) representation.

We chose Lattice Wave Digital filters [99] (LWDF) as the target structure. As we shall
see, these Single Input Single Output filters have numerous advantages and are widely used in
practical applications. Lattice Wave algorithms are usually described with block-diagrams, and
their coefficients are computed not with the transfer function but with a bilinear transformation of
the analog Lattice Wave filters [18], i.e. via mapping the analog plane into the digital plane.

In this rather technical Chapter we show how to convert LWDF to SIF, i.e. how to express
in the analytical SIF representation the order of computations in LWDF block diagrams. First,
out of the coefficients of LWDFs we need to design the realization, i.e. determine which basic
building blocks of LWDF to use (this will depend on the coefficient values), their order, etc. Then,
we will need to express the computations of the overall LWDF in SIF. We propose a generic
algorithm that, given the coefficients of LWDFs, performs those two tasks “on the fly” and returns
the corresponding SIF realization.

We must admit that this Chapter is extremely technical in the sense that it is full of subtle
manipulations with graph theoretical and analytical representations of filters. We first show
how data-flow graphs are usually interpreted in SIF formalism. However, to facilitate several
sub-steps of the conversion algorithm, we will have to come up with a modification of the usual
interpretation algorithms.

This work led to a publication at the European Signal Processing Conference (EUSIPCO)
in 2015 [7].

4.1 Lattice Wave Digital Filters

LWDF is a class of IIR digital filters that have several good properties, such as stability of imple-
mentation, possibility of suppression of parasitic oscillations [99] and possibility of construction

51

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

Stage 2 Stage (n — 1)
27t 27t
Y4 | Y2-(n—1)
Stage 0 INP1 ouT1 INP1 ouT1
Z—l
v v
ouT2 INP2 ouT2 INP2
70 V3| e V2-(n—1)~1
INP1 ouT1 INP1 ouT1 INP1 ouT1
R R ! 2
___________ 1

M High-pass

Input G‘)ﬁ -1
T S : o

INPI OUTI INPI OUT1 INPI OUTI L '~ 5
Y s e Y2.-n—1 Low-pass
OUT2 _ INP2 INP2 OUT2 _ INP2

A

po Nt
)
INP1 OuT1 OUT1 INP1 ouT1
Y2 Y6 | 7 Y2-n
Stage 1 Stage 3 Stage n

Figure 4.1: Block diagram of a N™" order LWDF filter.

of linear-phase designs [100]. LWDF can be either derived from analog reference filters [99] or
using explicit formulas [101].

The LWDF structure is highly modular and can be easily parallelized, which makes it suitable
for Very Large Scale Implementations (VLSI). Its stability qualities [99] make it a good candidate
for adaptive filtering [102] and Hilbert transformations design [103].

The general block diagram of the LWDF is illustrated on Figure 4.1. In its block-diagram, an
LWDF is represented by two parallel branches which realize all-pass filters [22, 104]. An all-pass
filter has its magnitude response equal to one for all frequencies, so it treats all frequencies
identically with respect to gain. In terms of the transfer function form, all-pass means that all
poles and zeros come in conjugate reciprocal pairs [22].

The basic bricks of each branch are called two-port adaptors [22]. Each adaptor contains

52

4.1. LATTICE WAVE DIGITAL FILTERS

INPL /7 -1 INP2 INPL /7 INP2
(U l R l—l
L) L3
J ‘[OUTI1 W, OUT2 OUTI * 0UT2
Type 1:1/2<vy< 1 Type d: -1 <y < —1/2
INP2 OUT2
INP1 -1 INP2 INP1 -1 INP2
. o @
INP1 OUT1 \\[/ \\{/
T Y\(~1 K\{ ~1
k OUT1 OUT2 OUTI1 OUT2
Type2: 0 <y <1/2 Type 3: —1/2 <~y <0

Figure 4.2: Two-port adaptor structures, for which an actual multiplier factor a is computed out
of y using Table 4.1.

three adders and one multiplier. According to [101], the multiplier coefficients y must fall into
the interval —1 <y < 1 to guarantee the stability of the LWDF filter. To simplify the multipliers,
it was proposed to use Richard’s structures for the adaptors [99]. The dynamic range of y
is divided into four parts, and four different adaptor structures are used depending on the
value of y. This way multiplication by 0 < « < 1/2 (instead of y) can be optimized in hardware
implementations [99]. The block diagrams' of the two-ports are illustrated on Figure 4.2 and the
conventional correspondence between the y and a coefficients is summarized in Table 4.1.

Type Y range Value of a
1 12<y<1 a=1-y
2 O<y=<1/2 a=y
3 -12=y<0 a=|y
4 -l<y<-12 a=1+y

Table 4.1: y to a conversion for different y ranges.

The transfer function of the low-pass LWDF can be expressed through the transfer functions
of two stable all-pass filters corresponding to the upper and lower branch:

1
H(z) = §(H1(2)+H2(2)), (4.1)

"Here we used the “—1” on the data-flow arcs to indicate a change of sign before the addition.

53

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

where H1(z) and Hy(z) are stable all-pass filters of upper and lower branches. The frequency

response can be written as
. 1/ . .
H(e/T) = 2 (/D) 4 o<1l (4.2)

where {H(wT) and £Hs(wT) are the phase responses of H1(z) and Hg(z) respectively.
Therefore the magnitude of the overall filter is limited by 1.

It was shown in [99] that in order to make sure that only one passband and only one stop-
band occur, the orders of the upper and lower branches must differ by one. Therefore the overall
order n of the filter is odd. The high-pass filter may be simultaneously obtained by changing the
sign of the all-pass lower branch. Band-pass and band-stop filters are obtained by cascading
low- and high-pass filters.

Usually, wave structures are derived from analog filters: first, a reference analog filter is
designed out of frequency specifications and then it is transformed to a digital filter. For several
common filter design methods, such as Butterworth, Cauer (Elliptic) and Chebyshev, explicit
formulas for LWDF coefficients exist [101].

Due to their good qualities, LWD filters are considered in numerous different applications,
including studies on linear-phase structures [105], design of multiplierless LWDFs [106] and
energy-efficient structures [107]. However, all studies on lattice wave structures implementa-
tion in finite word-length arithmetic are performed a posteriori, i.e. when the implementation
parameters are known [108]. The implementation of LWDF is often based on two- or three-step
algorithms: first, a coefficient quantization scheme based on solving optimization problems for
infinite-precision filter models is developed, and then it is adjusted for a finite-precision filter.
These models are specific to the LWDF and are not really suitable for a fair comparison with
other structures. Hence, the problem in front of us can be formulated as:

Problem }

Given a set of coefficients y that correspond to a Lattice Wave Digital filter, determine its

analytical SIF representation as the set of coefficient matrices f,...,S.

4.2 A LWDF-to-SIF conversion algorithm

The main idea is to exploit the modularity of the LWDFs. We propose to first divide the structure
into small “building blocks”. Then, manually translate data-flow graphs of those “building blocks”
to SIF representation (as we shall see, there will by only a few types of blocks, so the work is
not time-consuming). Finally, we can build the SIF representation for the overall filter by simply
cascading the SIFs of corresponding “building blocks”. In the following we give details of this
rather technical process.

54

4.2. ALWDF-TO-SIF CONVERSION ALGORITHM

Top branch

Subsystem

Stage

Branch

]

1/2
High-pass

Input

1/2
—>

Low-pass

Bottom branch

Figure 4.3: Division of a LWDF structure into subsystems, stages and branches.

As seen on Figure 4.1, a LWDF consists of two branches, and each branch is a cascade of
stages. Each stage may be considered as a cascade of subsystems of two types, which are
shown on Figure 4.4. In a stage there may be one or two subsystems, no more and no less. We
denote a subsystem with 1 input and 1 output as Type A. The subsystem with 2 inputs and 2
outputs is denoted Type B. The overall decomposition of a LWDF into branches, stages and
subsystems is illustrated on Figure 4.3.

Depending on the value of the coefficient y, and therefore the type of 2-port adaptor, we
obtain 8 possible subsystems (they are our “building blocks”). For example, the Type A subsystem
with adaptor of Type 1 will be called Type 1-A, etc.

55

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

—| INPI ouT2 —p o= 11— ———|INP1 —p(,—1
Y Y

<+——0UTT NP2 |€—m— <——0UT1 <—,
(a) Type A (b) Type B

Figure 4.4: Subsystems of Type A and B built out of two-port adaptors.

Given the filter’s coefficients y;, the conversion algorithm can be divided into four steps:
1. According to the value of the coefficients y;, deduce the SIFs for basic brick subsystems;

2. Cascade the subsystems into stages;
3. Cascade the stages into the lower and upper branches;

4. Combine the two branches into the final system.

In the following we describe the algorithms for each stage.
Subsystem conversion: this can be done by applying SIF notation to the block diagrams of

the subsystems. Data-flow graphs for the Type 1-A and 1-B subsystems are given on Figure 4.5.
For a complete reference on all subsystems, see Appendix 1. We have annotated the graphs in
the following way:

* results of additions and multiplications are temporary variables;

+ delayed variables are states;

uy (k) £ -1 us (k) uy (k) i -1 z(k)
B B [
-1
z
-1 t —1 t
) i r
1 (k) z(k+1) y2(k) y1(k) z(k+1)
(a) Type 1-A (b) Type 1-B

Figure 4.5: Subsystems for adaptors of Type 1.

By representing these annotated block diagrams for Type 1-A and 1-B subsystems as

equations, we obtain:

tHE+D = wfk)-ud®)

— B
Bk = ath®)+uhch) tB(k+1) uf (k) -2B (k)
2 " 8+ = atb@)+aP@)
FOAR *k+D = thk+1) JO1B , (4.3)
Br+n = B+
R0 = G D E D ¥Bk) HB G+ D+ Bk + 1)
yyk) = AR ! 2

56

4.2. ALWDF-TO-SIF CONVERSION ALGORITHM

ui uj y”
—> 2y — +— 2y
1 " = —» ”

B
Y1 Y2 U

Figure 4.6: Connection between subsystems to form a Stage of a LWDF.

which can be represented as:

1 010i00) (t&+D 0001 -1) (#&+1)

! th (k+1) 0000 1 ||t8*k+D
A+ |=]00i0i0 o [| *4® (4.4)

¥ k) 00i0i0 0 || wi®

¥4 (&) 00i1:0 0 ug(k)

tBk+1) 00/-1{1) (tG&+1)
2o+ | _foo 1io|[dasn 45
Br+n [ooioio|| Bw |7 (4-5)

¥B(®) 0000/ \ wk

Thus, we can deduce the SIF matrices Z14 and Z1p that correspond to the systems /#;4 and
JleZ

_al —013833_11 -1 0:i-1:+1
& TR L @ -1.1:0

Zia=[0 1:0:0 0|, Zip=|-43711470 (4.6)
0 0:1:0 O ‘ ‘

Cascade subsystems into stages: we need to perform a so-called “circular’ cascade of a
subsystem of Type A (MIMO system with 2 inputs and 2 outputs) with a subsystem of Type B
(SISO system) in the following way: output y‘Q“(k) is connected with input u8 (%) and output y2 (%)
is connected with input ug‘(k). Figure 4.6 graphically illustrates the operations that need to be
performed. This operation cannot be done using the classic cascade formula (3.10).

Hence, we propose a new algorithm for such a circular cascade. According to the cascading
principle from Chapter 3 Section 3.2.2, each input and output of the subsystems will eventually
pass into the temporary vector of the final SIF. To facilitate the manipulation of subsystems and
minimize the number of trivial temporary variables (“trivial” in the sense of simple reassignment,
e.g. #(k+1) =u(k +1)) in the SIF matrix after cascades, we came up with a technical “trick”.
We modify the subsystem conversion such that intermediate subsystems no longer represent
meaningful filters in SIF representation but some systems with the input and output variables
passed into the temporary vector. Then, cascading two subsystems boils down to simply writing
the equations corresponding to both subsystems together and assigning a few temporary
variables. In the end of the general conversion algorithm we “reconnect” the output of the filter

57

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

with the corresponding temporary variable and “assign” the input variable to the corresponding
temporary variable.

This convention is just a technical “trick” that facilitates the automation of the conversion
algorithm and does not change in any manner the order of computations of the initial system.

Remark 4.1. The reader might rightfully find it frustrating to revisit and change the subsystem
conversion algorithm. However, the revisited conversion will facilitate the cascading process.

Subsystem conversion revisited: our approach is better explained with an example. Con-
sider again a Type 1 adaptor, for which we build intermediate subsystems #;4 and .
Instead of (4.3) we write:

th (k+1) = 0
th,(k+1) = 0 B+ = o0
e+ =t -t R Bh+1) = 8 k+D-2Pk)
FOAR thk+D) = ahty (k) +E (R) HB B+ = dBBk)+2Bk) . (4.7)
thk+D) = —tfk+D+Eyk+1) B+ = -Br+1D+8k+1
thk+) = 24k Br+n = Br+D
AAk+1) = Hk+D)

Here we replaced all occurrences of the input u by temporary variables that will be later con-
nected with outputs if other subsystems during the cascade. The computations that correspond
to the outputs are also moved into a temporary vector.

New circular cascade algorithm: now the circular cascade boils down to the manipulation
with the temporary variables as shown on Figure 4.7.

B A
tf}l ty =ty
—P ————p
Ha Hp
tA (A _ B
Y1 ug — Py

Figure 4.7: Cascade of revisited subsystems is just manipulation over temporary variables.

Formally, to cascade systems /14 and A1 p into the system # we do the following:

* regroup all the vectors into the cascaded system #¢ with coefficients Z¢ as follows:
—Js 0 MA 0 0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Ze=|-Ks, 0 PA 0 0 (4.8)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

do the circular connection by assigning tf = t?z and ¢, = tf in the resulting system .

58

4.2. ALWDF-TO-SIF CONVERSION ALGORITHM

The last step is possible thanks to the “trick” with the temporary variables in revised basic
brick conversion. We can compare this new cascading to the classic formula from Chapter 3
Section 3.2.2 and see that in the new cascading algorithm there are no additional temporary
variables added to do the connection of inputs/outputs.

However, the drawback of this approach, is that after the circular cascade, matrix J¢ loses
its lower triangular form: the assignment t‘;‘z = tf violates the lower-triangularity of J¢.

The lower-triangular form of the matrix f in any SIF denotes the order of operations in the
filter: first, £1 is computed, then 5 may depend on #; and so on. In other words, ¢; depends only
on t;, with 2 < i. We can interpret o — I (we subtract the identity matrix to avoid cycles) as a
Directed Acyclic Graph. In this graph ¢; are the vertices and dependencies between temporary
variables are edges. Therefore, a topological sort [109] of the graph can be performed: the
vertices of the graph are ordered such that for every directed edge ¢, ¢; for vertex ¢, to vertex ¢;,
t;, comes before £; in the ordering. We perform Depth-First Search [109] sort to order the graph,
i.e. return matrix o to its lower-triangular form. The sorting algorithm guarantees by construction
that the cascaded system correctly describes the order of computations in the LWDF structure.

Algorithm II.1 illustrates our approach for the cascade of subsystems.

Algorithm II.1: cascadeSubsystems: cascade of LWDF subsystems into a stage
Input: A4 (with 2 inputs, 2 outputs and [4 intermediate variables)

g (with 1 input, 1 output and I intermediate variables)
Output: A (with 1 input, 1 output and I 4 + [p intermediate variables)
{Jc,Kc,...,Sc} — apply (4.8) upon A4 and Ap
i,s — index of £ in J¢

ly,4 < index of t?Z in J¢

y
iy,A — index of tf}z indJ¢

1,8 — index of tf in J¢

y
Jc(iuB,inA)<— 1
JC(iuzA,in)‘_ 1

JJc — TopologicalSort(J¢)
return SIF({J¢c,Kc,...,Sc})

© 00 N O O & W N =

Cascading stages into branches: analogously, it is straightforward to derive an algorithm
for the classic sequential cascade of our revisited subsystems, see Algorithm I1.2. Based on this
algorithm, the cascade of stages into branches can be derived. At this point we can "reconnect”
the input variable u(k) of the branch with the first element of the vector #(% + 1) (which implicitly
represents the input). For this, we just need to set #1(k + 1) = w(k). See Algorithm I1.3 for detalils.

59

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

Algorithm 11.2: sequentialCascade: sequential cascade of two SIFs
Input: A4 (with 1 input, 1 output and [4 intermediate variables)

A (with 1 input, 1 output and /g intermediate variables)
Output: /2 (with 1 input, 1 output and /4 + Ip intermediate variables)
{J,K,...,S} — apply (4.8) upon A4 and /B

l

ey

y4 — index of t‘;} ind

iy — index of t5 in J
J(iuB,iyA)<— 1

J ¢ — TopologicalSort(d¢)
return {J,K,...,S}

o a ~» W N

Algorithm I1.3: cascadeStages: cascade of LWDF stages into a branch
Input: stages #;, i =1,...,s (with 1 input, 1 output and [; intermediate variables)
Output: branch # (with 1 input, 1 output and }.7_, /; intermediate variables)

1 e]fhjfl

2 fori —2tosdo

3 {J,K,...,S} — sequentialCascade(#,#;) // here we use Algorithm II.2
4 S — SIF ({J,K,...,S})

5 end

6 N(1,1)—1 // assign the input to the temporary variable
7 A — SIF ({J,K,...,S})

8 return A2

Cascading the branches into the LWDF filter: finally, we combine the outputs of the top
and bottom branches to obtain a lowpass or highpass filter (see Figure 4.1). Denote by /#; the
top branch (with 1 input, 1 output, /1 intermediate variables) and /% the bottom branch (with 1
input, 1 output, /o intermediate variables). By construction, the outputs of the branches are zero
vectors and the actual outputs are stored in the last element of the temporary vector. Then, the
idea is to add a temporary variable, which reflects the addition (subtraction) of two branches
and then to link the output of the combined system with this new temporary variable.

Then, the SIF for a LWDF filter is:

-J;1 0 0 M1 0 N

0 —-Js O 0 M, Nz

t to -1:0 0:0
Z="K, 770 0P, 0/0 (4.9)

0 -K; 0: 0 Py: 0

,,,

4.2. ALWDF-TO-SIF CONVERSION ALGORITHM

where

(0,...,0,1) if highpass
——

£,=(0,...,0,1) #y= L2 , . (4.10)
—— 0,...,0,-1) if lowpass
——

Iy

Algorithm I1.4 illustrates this final stage of the conversion.

Algorithm I1.4: cascadeBranches: cascade of LWDF branches into a lowpass/highpass
filter
Input: 7 top-branch (with 1 input, 1 output and /; intermediate variables)
J£9 bottom-branch (with 1 input, 1 output and /o intermediate variables)

Output: SIF #

t;1 —(0,...,0,1) // with [l zeros
ts —(0,...,0,1) // with lg zeros
if lowpass then

‘ to — —1o

end

{J,K,...,S} — apply (4.9) upon A1, # and t1,#9
H — SIF({J,K,...,S})
return A

0 N O o A WO N =

Final algorithm Given a filter’s coefficients y;, i =0,...,n the conversion algorithm can be
divided into four steps:

1. Deduce the SIF representation for each subsystem according to its y; value using the
revised conversion algorithm;
2. Cascade the subsystems into stages using Algorithm II.1;

3. Cascade the stages into top and bottom branches using Algorithm I1.3 which is based on
Algorithm I1.2;

4. Combine the two branches into the final system using Algorithm 11.4.

Remark 4.2. The reader might have noticed that there may occur some amount of trivial
temporary variables that are just assignments. In order to remove them, we apply a simplification
algorithm which nevertheless preserves the initial order of computations in the LWDF structure.

61

CHAPTER 4. SPECIALIZED IMPLICIT FORM FOR LATTICE WAVE DIGITAL FILTERS

vi | 0.72689 | -0.79125 | 0.51319 | -0.97439 | 0.30983 | -0.62505 | 0.77261 | -0.90732 | 0.36682
a; | 0.27311 0.20875 | 0.48681 0.02561 | 0.30983 0.37495 | 0.22739 0.09268 | 0.36682
Type 1 4 1 4 2 4 1 4 2

Table 4.2: Initial coefficients of LWDF and adaptor settings.

4.3 Conversion example

To provide a conversion of LWDF to SIF we must first obtain the coefficients of the Lattice Wave
structure. We do this using the Lattice Wave Digital Filter Toolbox for Matlab [110] that was
developed at TU Delft. Naturally, we implemented our conversion algorithm using Matlab as
well?. Using Matlab here is no danger to reliability because the conversion algorithm just copies
data and does not perform Floating-Point computations.

Consider the specifications of the SISO low-pass filter from Section 1.4.3 in Chapter 1. A
9™ order LWDF filter satisfying these specifications was obtained using the LWDF Toolbox. The
first digits of its coefficients y; and the actually implemented adaptor coefficients a; are given in
Table 4.2. Applying the conversion algorithm described above, we obtain the SIF with coefficient
matrix Z given by

Oom

(4.11)

where blue and pink rectangles represent -1’ and "1’ respectively and circles are the non-trivial
coefficients a;. The only triangle represents the final division by two (i.e. just a shift operation) of
the sum of outputs of lower and upper branches (see Figure 4.1).

Remark 4.3. Given the structure coefficients, no computational errors are induced during the
conversion algorithm, since our algorithm simply copies them into right places in SIF matrices.

2However, we also embedded the conversion algorithm into the filter code generator tool written in Python. It is
based on Matlab API for Python, i.e. an installation of Matlab is required.

62

4.4. CONCLUSION

—~ 0.02 —~ 0.02
= Hy £
2 AN AR A AR AR AAA 2 AN AR AR A AR ARA
(2] (2]
5 OJHHH IRAAAAAAAAATAY J'JAVAV{ 5 U,HHHI AATATAAAAA ATATAY Ay/‘v/‘v[
s Hyyyyyr? 1 a IR RS 1
8 A 3 [y
o —0.02|f o —0.02||
© «
=) 3
Q Q
E —0.04 §70.04
0 20 40 60 8 100 0 20 40 60 8 100
k k
(a) Impulse response of the LWDF (b) Impulse response of the LWDF
provided by the LWDF Toolbox realization in SIF.

Figure 4.8: Comparison of the impulse responses of the LWDF and the corresponding SIF.

We can compare the SIF realization with the reference Lattice Wave filter by several means.
For instance, we may trace the impulse response of both systems and compare them. Figure 4.8
demonstrates that impulse responses (at least the first 100 terms) are identical.

4.4 Conclusion

The Lattice Wave Digital filter structure has been well-studied over the years and is widely used
in real-life applications. However, a fair comparison with other structures was not trivial due to
the block diagram description of the filter.

We provided an algorithm that without any computational errors represents any LWDF
realization in the SIF. Using LWDF coefficients, our task was to first design a LWDF realization
and then represent it as an algorithm in the SIF. For this technical task we provided new system
cascade algorithms for SIF. Our algorithms ensure that the initial numerical properties are
preserved by construction in SIF representation.

Now, using SIF capabilities we can compare this structure fairly with other filter realizations.
We refer the reader to [7] for an example of a comparison of LWDF with Direct Forms and
state-space structures according to several classic signal processing quality measures. This
work permitted us to more deeply understand the relationship between data-flows and SIF
representation.

63

CHAPTER

GENERAL ALGORITHMS FOR CONVERSION

fter taking a closer look at the Specialized Implicit Form and our "hands-on" experience
with the creation of SIF corresponding to Lattice Wave filters, we are ready to propose
several improvements to this unifying framework.

Before this thesis the usual user scenario of our code generator started with the choice
of possible structures from a dictionary of filter realizations. Obviously, it would be too time-
consuming to write algorithms for conversion of all existing structures to SIF. Another typical
scenario is when we need to analyze an already existing structure described with a data-flow.
Hence, we developed and implemented an algorithm for the conversion of an arbitrary linear
filter described as a data-flow in Matlab Simulink format to SIF representation.

Now we can take any data-flow describing a linear filter and obtain a SIF representation. For
example, we can convert an existing Simulink design of a LWDF to SIF. The main difference in
this case is that we will need to design the actual data-flow graph, while the algorithm from the
previous Chapter automatically created the LWDF design out of the coefficients.

The Simulink-to-SIF conversion is a significant improvement to the framework functionality,
since it makes the comparison of different linear filters practical. We shall detail this point in
Section 5.1. This work led to a publication [12] at the IEEE SiPS conference in 2016.

Further, we proposed an algorithm for the Multiple Precision (MP) computation of the
transfer function of any linear filter given in SIF representation. First we compute a Floating-Point
approximation of the transfer function and then rigorously bound the error. To bound the error, we
use a well-known object, the Worst-Case Peak Gain, which is just a #1-norm of filter's impulse
response. We shall detail this point in Sections 5.2 and 5.3. This work is a part of contribution
that was published at the 24th IEEE ARITH Symposium in 2017 [9].

5.1 Conversion of data-flow graphs to SIF

Matlab Simulink is a widely used software tool for the model-based design of digital systems, their
simulation and implementation. Engineers worldwide use Simulink for academic and industrial
applications, including some for reducing fuel emissions, developing safety-critical autopilot

65

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

u(k u(k — u au(k uy (k) + ua(k)
o)] -1 [y (k) (k) uzug@ 1(k) + gl
)

ul(

(a) delay (b) multiplication (gain) (c) addition

Figure 5.1: Basic blocks in Simulink block-diagrams.

software, and designing wireless LTE systems. While not giving any proof of the accuracy or
guarantee on the finite-precision implementations, Simulink is no doubt a state-of-the-art tool for
modeling linear filters. This conversion will enable the comparison and implementation of any
data-flow describing linear filters.

5.1.1 Simulink

Simulink mainly uses a graphical block diagram to describe the model. The building blocks of
such diagrams are adders, multipliers and delays (see Figure 5.1).

Internally, the block diagram is stored using extensible markup language (xml) (more specifi-
cally in .s1x format). In this format the <System> tag contains the model description, and the
<Block> and <Line> tags inside hold blocks of elements and their interconnections.

ul(k) t(k+1)
> > (D
y(k)

u2(k)

T

x(k+1) x(k)

Figure 5.2: A very simple Simulink block diagram.

Consider the very simple data-flow diagram given on Figure 5.2. It consists of gain, delay
and sum blocks. All the information on the block parameters can be easily retrieved by parsing
the xml file. For instance, its sum and gain operators are described in xml with the following
code:

<Block BlockType="Sum" Name="Sum" SID="3">
<P Name="Ports"> [2, 1] </P>
<P Name="Inputs"> |++ </P>

</Block>

66

5.1. CONVERSION OF DATA-FLOW GRAPHS TO SIF

<Block BlockType="Gain" Name="5" SID="4">
<P Name="Gain">5</P>

</Block>
In this example, the sum block has the identification SID=3 and the gain with constant 5 has the

identification SID=4. The output of the gain is connected into the sum operator with following
code:

<Line>

<P Name="Z0Order">7</P>

<P Name="Src">4#out:1</P>
<P Name="Dst">3#in:1</P>
</Line>

We see that all the information concerning the model can be easily extracted from the xml file.

Thus, the problem in front of us can be formulated as follows:

Problem }

Given a file that contains a Simulink model of a data-flow describing a linear digital filter,

return a SIF corresponding to this data-flow.

5.1.2 Simulink-to-SIF conversion algorithm

Our goal is, given a block-diagram described with a Simulink model and stored in a file, to
identify all temporary and state variables, as well as to determine the coefficients of the Sums-
of-Products by Constants (SOPCs) that constitute the system. In order to do that, we assume
the following set of rules:

* since each delay element represents a computation that is saved from one time instance
to another, in SIF we note it as a state variable;

+ the gain elements represent the coefficients of variables in the corresponding SOPC;
» from each sum element, we can deduce one equation (as a sum of its inputs);

+ all equations produced by a sum block that feed a delay are state equations;

« all equations by a sum block connected to the model output are output equations;

+ the others (that feed another sum blocks) are intermediate equations.

67

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

As each Simulink block has its identification number (SID), we can easily label each block
and deduce the equation for each sum block by listing all connected blocks at their inputs. All
chained sum blocks can be gathered into one sum with several operands. Then we have a
system of equations that defines our model. In case of a subsystem present in the diagram, the
design is flattened before obtaining the block equations.

The most important consideration in the Simulink to SIF conversion is the order of the
computations. Different order of computations leads to different numerical properties after we
pass to finite-precision arithmetic. Therefore, when we represent a data-flow in SIF, we must
ensure that the order of computations stays the same.

For instance, the simple example of a block-diagram given in Figure 5.2 corresponds to the
following system of equations:

tk+1) =6-x(k)+5-ui(k)
x(k+1) =1-ugk) (5.1)
y =3-tk+1)

From this system of equations, it is then straightforward to identify the matrices o, K, L, M, N,
P,Q, R, S of the SIF. In our toy example J = (1) L= (3) M= (6) N = (O 5), Q= (O 1)
and other matrices are null.

However, the order of labeling the temporary variables during the conversion can compromise
the lower triangularity of the matrix J. As in the case of Lattice Wave digital filters, we return f
to its lower-triangular form by interpreting J — I as the adjacency matrix of a Directed Acyclic
Graph (DAG). We perform a topological sort [109] of this DAG: if for some i the element ¢;
depends on ¢; with j > i, then element ¢; is placed before ¢; and corresponding changes in
are done (along with changes in N, K and L). In other words, we restore the order of operations
up to some possible permutations of operations that do not depend on one another, for example
the ones that on the data-flow graph are parallel.

5.1.3 Conversion example

We implemented our algorithm in Python. It requires as only input a Simulink model description
file. Given some reference test results, we can automatically test the correctness of the SIF
representation via comparison (e.g. compare simulation output).

Consider the 3™ order Lattice filter described with Simulink block-diagram given on Figure 5.3.
Applying the general conversion algorithm, we obtain the SIF described with the following

68

5.2. CONVERSION OF ARBITRARY STRUCTURES TO TRANSFER FUNCTIONS

Figure 5.3: Simulink diagram of a 3" order Lattice filter.

coefficient matrix:

-1 0 0 0 0 0 -0.2 0 1
1 -1 0 0 0:0281 O 0 0
0 -0281 -1 O 0 1 0 0 0
0 1 0O -1 0 0 0 —0.35710
Z=|0 0 0037-1 0 0 1 10 (5.2)
0 0 0 0 1: 0 0 0 0
0 0 1 0 0: 0 0 0 0
0 0 0 1 0.0 0 0 0
0.2 0 0 0 0: O 1 0 0

We check that both representations are equivalent by comparing the outputs of both systems.
We perform some simulations of Simulink and SIF models in double precision floating-point
arithmetic. For example, Figure 5.4 shows the response of the Simulink model and of the
computed SIF realizations to a constant unit signal. The output seems to be the same. However,
since we have no control over double precision simulation in Simulink (what rounding is used,
whether Fused Multiply and Add is available, etc.), the outputs of Simulink and SIF simulations
may not be exactly the same. Figure 5.4c illustrates the difference between outputs of data-flow
and SIF simulations.

If the transfer function corresponding to the initial Simulink model is available, we can
compare it with the transfer function of the SIF realization. However, as described in Section 3.2.1
Chapter 3, rounding errors may occur during the computation of a transfer function for the SIF
realization. Thus, we need to improve the algorithm for conversion to the transfer function.

5.2 Conversion of arbitrary structures to transfer functions

Accurate determination of the transfer functions of arbitrary filters is important for two major
reasons:

+ to analyze an already existing filter realization (e.g. a data-flow graph with its coefficients
is given but no information on the transfer function is available);

69

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

A N
1 /F LS BB 1 /r\ 2 o8 /])
Y | ol h A
£ 05 2 05 s
L Ll Rvaei
v, ¥ o i
0 \'f 0 A4 (]){ V
o 2 4 6 8 10 R T B T U:) e e
k X .
(a) Simulink output (b) SIF output (c) Difference between outputs

Figure 5.4: Comparison of responses of Simulink and SIF models to a constant unit signal.

+ during implementation, coefficients in a realization may be modified (scaled, quantized,
etc.). We must always test the properties of the corresponding transfer function: to check
stability of the modified filter, its spectral behavior, etc.

If the structure type is determined and well-studied, there may be known closed formulas
for the transfer function computation (e.g. Lattice Wave filters, state-space). For some struc-
tures, such as Direct Forms, determining corresponding transfer function is straightforward: the
structure coefficients are the same as those of the transfer function. Then, for example, after
quantization of the coefficients in the data-flow graph, the transfer function corresponding to
quantized filter can be easily computed.

However, if the structure type is not given, other approaches must be used. In [111, 112]
authors propose various algorithms for the determination of a transfer function by analyzing
the data-flow graph. However, no error bound with respect to a certain transfer function norm
is given. In Matlab Simulink, extraction of a model’s transfer function is based on sampling the
frequency response of the system and then interpolation. Obviously, such approach may be
prone to computational and approximation errors.

Therefore, our goal is to propose an approach for reliable computation of a transfer function
corresponding to an arbitrary linear data-flow graph; reliable in the sense that the computed
transfer function is proven to satisfy some error bound (with respect to a certain given norm).

Since any linear data-flow graph can be represented as a SIF structure, it is enough to
propose a conversion algorithm for a SIF.

5.2.1 Conversion of a SIF to Transfer Function

For simplicity of demonstration, in this Chapter we consider only SISO systems, i.e. with 1 input
and 1 output. However, our reasoning is easily generalized for the case of MIMO filters.

70

5.2. CONVERSION OF ARBITRARY STRUCTURES TO TRANSFER FUNCTIONS

Let Z=(J,K,...,s) be arealization of a filter described with a SIF. lts coefficient matrix is

—J M n
Z=|K P ¢ (5.3)
l r s

where, since the system has 1 output, r and ¢ are column vectors, I and r are row vectors and
s is a scalar. We seek to compute the transfer function H that corresponds to Z.

As it was mentioned in Chapter 3, Section 3.2.1, a direct way to obtain the transfer function of
a given SIF is to first convert it to a discrete-time state-space representation . := {maA, b, c,d}

x(k+1) = Ax(k)+bu(k)
P (5.4)
y(k) = cx(k)+du(k)
with
A=KJ 'M+P, b=KJ n+q, (5.5a)
c=lJ 'M+r, d=1J 'n+s. (5.5b)

Before this thesis, the conversion of a filter from SIF to state-space representation was
done naively in Floating-Point arithmetic and applying rigorous analysis and implementation
methods upon an error-prone state-space is meaningless. In this thesis, we propose to avoid
the rounding errors of this conversion by simply computing the coefficients (A, b, ¢,d) exactly:
matrix multiplications and additions can be done using rational arithmetic, and the inverse of
matrix o can be computed exactly as well. Since o is lower-triangular with 1 on the diagonal, its
inverse J ! can be found using forward descend. Therefore, we can compute an exact inverse
using rational numbers.

By applying the Z-transform on (5.4) [18], we obtain

{ 2X() = AX@)+bU(z) (5.6)
Y() = ¢X()+dU(2)

The transfer function H(z) is the ratio 58 First, we need to express X (z):
(zI -A)X(2)=bU(2) (5.7)
X(2)=(I-A)'bU(2). (5.8)

Then, for Y (2) we have

Y(2)=ezI -A)'bU(2) +dU(2) (5.9)
=(ezI-A)'b+d)U(2). (5.10)

"In practice, we use dyadic rational arithmetic, i.e. the denominators are powers of two.

71

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

We obtain that the transfer function of the state-space . is
HEZ)=c(zI-A)'b+d. (5.11)

Thus, we may determine the SIF’s transfer function through the corresponding state-space
realization. This is not the only way but rather our technological choice. In the following we
propose an approach on the accurate computation of the transfer function corresponding to a
state-space realization.

5.2.2 Accurate computation of the transfer function of a state-space

The main bottleneck in the computation of (5.11) is the inverse (zI — A)~!. A commonly used
approach, e.g. in Matlab, is to find the inverse symbolically? (with z as unknown) and compute the
transfer function coefficients using rational numbers. However, such approach is computationally
inefficient: the state-space system may be large and the transfer function may be required to
be computed for numerous times during the implementation. In practical implementations, e.g.
Matlab, we first get a symbolical expression for the transfer function and then the computations
are done in double precision. Obviously, numerical errors may occur but no error bound is given.

Another approach is to completely avoid the closed formula (5.11) for the transfer function
but try to bring the state-space realization to a canonical form using similarity transformations.
We remind the reader that canonical form of a state-space is directly based on the coefficients
of the transfer function. For example, this approach is implemented in Python library SciPy [113].
However, the canonical form is obtained by numerous similarity transformations, i.e. matrix
multiplications which are performed without any concern on rounding errors. As usual, no error
bound on a certain norm of the transfer function is given.

In most applications®, exact computation of the Transfer function is not required but an
approximation with a rigorous error bound (w.r.t. a certain given norm) on the transfer function is
enough. Since double precision might be not enough to ensure such an error bound, we propose
to perform the computations in Multiple Precision (MP) arithmetic. Therefore, the problem is

—— Problem |

Given a small £ > 0, compute an approximation H on the transfer function H such that

|H(z) - A@)|<e, Vze{elwel0;2m]}. (5.12)

We propose yet another closed formula for computation of the transfer function.

2By first setting all matrices to be symbolical expressions and then deducing a symbolical expression of the
inverse using classical algorithm (using minors and cofactors).
SIn practical filter implementations some design margin is always present.

72

5.2. CONVERSION OF ARBITRARY STRUCTURES TO TRANSFER FUNCTIONS

Lemma 5.1. Let & =(A,b,e,d) be a state-space realization of a stable causal linear filter.
Suppose A € R™*"= pe diagonalizable with no muitiple eigenvalues*. Let V € C™*"= pe its
eigenvalue matrix and let E € C"=""+ contain its associated eigenvalues {A;}1<i<n, on the
diagonal. Then the transfer function associated with the filter & can be written as a rational
function H(z) = 22 with

a(z)
a) =[]z -)), (5.13)
j=1
b(2)= Y (eV)(V 1o [[(z - A,)+d-alz). (5.14)
i=1 j#i

Proof. Consider the eigendecomposition VEV ~! of the matrix A:

H(z)=ec(zI-VEV Y 'b+d (5.15)
=eVEI-E)'V1b+d (5.16)
1
Z—/ll
=cV Vib+d. (5.17)
1
z2—An,

By explicitly expressing the scalar products, we obtain:

(V-1b),
He) =|(eV) (@Y —— : +d (5.18)
z—M z2—An,
(V=1b),,
= S eV B —— +d. (5.19)
i=1 z=Ai

By gathering all terms on the same denominator, we can easily obtain the closed formulas
(5.13)-(5.14). |

We shall remark that the accuracy of the computation of the transfer function relies on the
accuracy of the computation of its eigendecomposition and on the computation of the scalar
products. For the latter ones, it is not complicated to propose a MP algorithm that will satisfy a
certain a priori given error bound.

However, exhibiting a bound on the accuracy of the eigendecomposition is a non-trivial task.
There exist algorithms that perform all the computations in the eigendecomposition algorithm
with MP. Nevertheless, no sharp bound on the accuracy of computed MP eigenvalues has yet

4AnabgoudmthecaseofmuMMee@envmuescanbeconﬁdemd.

73

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

P y(k)

u(k) Ay(k)
S B705)
AL

Figure 5.5: A% is a difference between two filters.

been proposed. Therefore, for the moment, it is not possible to obtain the least required precision
of the internal computations in (5.13) and (5.14) that will yield (5.12).

We propose to iteratively increase the accuracy of the computed transfer function. Suppose
we have available MP basic bricks for matrix arithmetic and a MP eigensolver such that its
absolute error decreases when its working precision is increased. Then, increasing the precision
of the computation of H decreases its error [(H — H)(e/?)| for all » € [0,27].

In order to bound this error we propose the following iterative approach that goes through
four steps:

Step 1: we first compute the approximation H on the transfer function of & = (A, b, e¢,d) using
a MP eigendecomposition and MP computations for equations (5.13) and (5.14);

Step 2: we deduce the system Z which exactly corresponds to the approximation H(z) using
the controllable canonical state-space [18], see Chapter 1 Section 1.5.2.

Step 3: we compute the state-space difference A¥ =& — & which is defined as the difference
between outputs of the two state-spaces (see Figure 5.5). No computational errors are induced
on this step, coefficients of A.# are copied from . and & in the following manner:

A 0 b

aa=" 7|, Ab=|"], (5.20a)
0 A b

Ac = (c —’é) : Ad=d—-d. (5.20b)

Here the subtraction d —d can be performed exactly using rational arithmetic.

Step 4: we compute a bound on the approximation error |(H—ﬁ)(ejw)| for all w € [0,27]:
analogously to the case of the state-space, we define the difference AH of the transfer functions
H and H. In other words, AH is just the transfer function of A.&. The relationships between H,

H, AH and their corresponding state-space systems are illustrated on Figure 5.6.
In [114], it was shown that

|AH(eJ‘w)(< sup|AH(efw)| <IAhl; Vwel0,27] (5.21)

74

5.2. CONVERSION OF ARBITRARY STRUCTURES TO TRANSFER FUNCTIONS

y%kj?_msp
H — H = AH

Figure 5.6: Straight lines: exact transformations. Curved lines: MP transformation.

where A#h is the impulse response of the system A.#, and ||Ah|l; is its £1-norm. It is defined as

IARIL 2) |ARKR). (5.22)
k=0

Remark 5.1. We bring the reader’s attention to the elegance with which (5.21) binds the errors
from the frequency domain with the errors in the time domain. Indeed, we can easily consider
the difference between H and H to be due to the quantization of filter coefficients. Then, to
evaluate the impact of the quantization upon filter’s spectrum, we just compute the €1-norm of
the difference filter AH. We are going to explain this approach in details in Chapter 8.

Obviously, (5.22) is in infinite sum and cannot be exactly computed in finite time. However,
in Chapter 6 we show how to compute it with arbitrary precision. Thus, we obtain an arbitrarily
precise bound on the error of the approximation H:

H(/*) - H()| <0, Ywelo,21], (5.23)

where © = ||Ah|l1 + €g and eg > 0 denotes the upper bound on the error of approximation of
IAR]1, this bound can be arbitrarily small.

Hence, to ensure that for a small given € the bound (5.12) is satisfied, we must ensure that
© < &. This can be achieved by increasing the precision of the approximation of H.

We choose the precision of the computations based on an heuristic which increases the
compute precision in a loop and is, hence, reasonably fast and accurate but does not provide
any guarantee that the precision will eventually be enough. The result will always be reliable,
though.

Algorithm I1.5 illustrates our approach: the initial precision INIT_PREC of the eigensolver is
increased by a factor PREC_FACTOR as long as the bound (5.23) is not satisfied. The process
will necessarily end if our assumptions on the eigensolver are satisfied.

Algorithm 1.5 uses following routines that are not detailed in the manuscript but can be found
directly in the implementation:

» multiprec_eigendecomp for the computation of an eigendecomposition of a real matrix,
internal operations are performed with the precision given in argument;

75

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

» multiprec_tf for the computation of a transfer function as given in Lemma 5.1;

» tf2canonical for the exact construction of a canonical state-space system out of a

transfer function;

» linorm algorithm for the computation of the ¢1-norm of a state-space system in arbitrary

precision (this algorithm will be detailed in Chapter 6);

» difference for the exact construction of the difference of two filters (see Figure 5.5).

Algorithm I1.5: computeTF - accurate Transfer Function computation

Input: state-space coefficients (A, b, ¢,d)

£ >0 bound on approximation error

Output: H

//

set initial precision for eigensolver computations

1 p— INIT_PREC;

2 do

// eigendecomposition with working precision p

V,E —multiprec_eigendecomp(4,p) ;

// compute transfer funciton with accuracy p

H— multiprec_tf(e,b,d,V,E,p);

// construct corresponding canonical state-space
Eae—tf2canonicalﬂ?);

// construct state-space of difference
A&p«—difference(5”“§5;

// compute its ¢i-norm with absolute error bounded by &/2
O — linorm(AS,e/2) +&/2 ;

// increase the precision by some factor PREC_FACTOR
p —PREC_FACTOR p ;

9 while ® > ¢;
10 return H

5.3 Numerical examples

We implemented Algorithm 11.5 in Python using the mpmath library [115] and the implementation

of the ¢1-norm of a filter that will be presented in Chapter 6.

Consider our key example of a 8M-order transfer function from Chapter 1 Section 1.4.3.

Example 1:
truncate the coefficients to 32 bits. Denote by Hprj its transfer function. We wish to compute

76

Suppose we implement the filter with Direct Form Il transposed structure and

5.4. CONCLUSION

an approximation Hpg of the transfer function that corresponds to the quantized realization
with the error bound & = 2732, We just apply our algorithm and obtain a multiple precision
approximation Hpgy. The algorithm returns an answer after the first run, i.e. after computing
the eigendecomposition with the initial precision INIT_PREC (which we set to 53 bits in our
implementation).

In case of the Direct Forms, quantization of the realization coefficients is equivalent to the
quantization of the transfer function. We can verify that the SIF respects this property. Denote by

H,(z)= qu a truncated to 32 bits version of the initial example transfer function. We obtain
q

that its coefficients are the same as those returned by our algorithm:
[64(2)-b(2)|| =0, |aqz)-at2)|,, =0, (5.24)

where the co-norm gives the magnitude of the largest value. However, with other structures
quantization of transfer function is not equivalent to quantization of the coefficients of the
realization.

Example 2: Suppose we realize the example transfer function with a balanced® state-space
structure and truncate the coefficients of the state matrices to 32 bits. Denote by Hgsg its exact
transfer function. We apply our algorithm with an a priori error bound & = 2732 and obtain an
approximation Hsg after computing the eigendecomposition with 128 bits of precision. In this
case we obtain that

[64(2) -], =13-107%, |ag()-a(2)|,, =5.5-10"", (5.25)

This difference is due to the fact that during balancing of the state-space realization some
rounding errors occurred.

The main goal of these examples is to demonstrate that in general truncating the coefficients
of the filter realization is not the same as truncation of the coefficients of the corresponding
transfer function, and vice versa.

5.4 Conclusion

As first contribution of this Chapter, we developed an algorithm for the conversion of any data-
flow describing a linear filter in Simulink format to SIF. This contribution has a major impact on
the functionality of the automatic filter code generator: it permits us to implement and compare
any linear filter using our flow. Now, analysis and implementation techniques that are developed

5The balanced form was obtained using function ss in Python SciPy.

77

CHAPTER 5. GENERAL ALGORITHMS FOR CONVERSION

D|ct|or_1ary Lo
of algorithms\ wave

Specialized
Implicit
Form

Arbitrary Linear
Data-Flows

e A
- -—

Transfer
Function

Figure 5.7: Interactions between SIF and other representations. Straight arrows denote the
exact and curved arrows denote multiple precision transformations.

for SIF can be generalized to any filter algorithm. In perspective, we should develop an algorithm
for the conversion from SIF representation to a Simulink data-flow graph. This can be done
using considerations analogous to those from Section 5.1.2.

In the second contribution, we provided an algorithm for the accurate computation of a
transfer function of a SIF and thus, for any linear filter algorithm. It is especially useful during
the analysis of existing implementations or for structures whose coefficients are not directly
coefficients of the transfer function. Our algorithm is based on the reliable computation of the
¢1—norm of a digital filter® and on multiple precision eigendecomposition’ of a real matrix.
In practice, we do not compute the eigendecomposition with the least precision® but start
with a certain initial precision and increase it by some factor until the error-bound condition
is met. As perspective, we would like to improve this point and, ideally, provide an algorithm
for eigendecomposition of a real non-symmetric matrix that adapts the precision of internal
computations just enough to meet an a priori given error bound.

To conclude both Chapters 4 and 5, we proposed algorithms that permit us to finally use SIF
as a unifying framework in practice. We proposed a new conversion algorithm for a widely-used
structure, generalized the approach for any linear data-flow and ensured that computation of a
transfer function for SIFs is accurate. An overview of the possibilities of conversions between
SIF and other representations is illustrated on Figure 5.7 (compare to Figure 3.2 on p. 47).

6 We address this question in Chapter 6.
7In the sense that all internal operations are performed with some a priori set precision.
8We do not think it is possible to determine the least precision without error bounds on the computed eigenvalues.

78

e TIT

RELIABLE FIXED-POINT
IMPLEMENTATION OF DIGITAL
FILTERS

79

CHAPTER

RELIABLE EVALUATION OF THE DYNAMIC RANGE
OF AN EXACT FILTER

nce a structure for filter implementation is chosen, we must convert the obtained

realization into a Fixed-Point algorithm. As we have seen in Part | Chapter 2, for a

Fixed-Point implementation, we must know beforehand the dynamic range of all the
variables involved in the computations. If the dynamic range is underestimated, there is a risk of
an overflow at some point in algorithm execution. On the other hand, overestimating induces a
higher cost of the implementation. Our goal is to accurately determine the dynamic range of all
variables involved in computations of any LTI algorithm. An important remark is that we do not
use any assumptions on the behavior of the input signal apart from it being bounded. In other
words, we focus on the worst-case dynamic range.

We have seen in the previous Chapters that any LTI filter can be represented with the
Specialized Implicit Form (SIF), which can be exactly converted to a state-space. Without loss
of generality and in order to make the notation and equation simpler, further in this Chapter we
demonstrate our algorithms for the case of state-space systems.

In this Chapter we propose a novel approach for the reliable determination of the dynamic
range of a digital filter's output: we compute with arbitrary accuracy a bound on the output
interval of the filter. Our algorithm is based on the computation of the so-called Worst-Case
Peak Gain (WCPG) of a digital filter which is just £1-norm of the filter's impulse response.

For state-space systems, this measure is classically given as an infinite sum and has
matrix powers in each summand. These problems are both known to be non-trivial. In this
Chapter we propose a detailed algorithm that ensures that the WCPG is computed with an
absolute error rigorously bounded by an a priori given value €. For these purposes several
multiprecision algorithms with rigorous bounds were developed. This is achieved by adapting the
precision of intermediate computations. Therefore, we present not only the error analysis of the
approximations made on each step of the WCPG computation but we also deduce the required
accuracy for our kernel multiprecision algorithms such that the overall error bound is satisfied.

81

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

We analyze the error induced by truncating the infinite sum and give a direct formula for
the computation of a lower bound on truncation order required for a desired absolute error. The
truncation order algorithm involves Interval Arithmetic computations and uses the Theory of
Verified Inclusions.

We also investigate the case of uncertain systems when the state-space coefficients are
represented as small intervals. We give a brief description on how to adapt our initial algorithm
for interval computations.

This work is mostly based on the article [11] published at IEEE Symposium on Computer
Arithmetic (ARITH) in 2015 and [8] presented at the 17th International Symposium on Scientific
Computing, Computer Arithmetics and Verified Numerics (SCAN) in 2016.

Notation: we remind the reader that all matrix and vector absolute values and inequalities
are applied element-by-element.

6.1 State of the Art

As we stated in Chapter 2 Section 2.3.3, several approaches on the estimation of a filter's
dynamic range exist.

In particular, the most commonly used approach is based on simulations [80, 82]. An-
other way to estimate the dynamic range is the determination with a certain probability of an
overflow [90-93]. Indeed, some applications, like telecommunications, can tolerate a slight
degradation of the accuracy due to overflow; more precisely, due to techniques that deal with the
overflows. For example, when the values that overflow are saturated towards maximum/minimum,
the accuracy of the output cannot be determined.

All these approaches do not take into account the worst cases that can be extremely rare.

We, on the other hand, target the applications that require a guarantee on the quality of the
filter’s output and that no overflow occurs. For example, in emerging drone and autonomous
vehicle industries the safety standards are extremely high and require such guarantees. In [39]
Hilaire proposed an approach on the determination of the filter's dynamic range which is based
on the well-known following result: the Worst-Case Peak Gain theorem [10, 116]. However, this
approach cannot be used in practice because the WCPG measure cannot be computed exactly
but only approximately. In the following we detail the WCPG theorem and formally state the
problem that we will solve in this Chapter.

82

6.1. STATE OF THE ART

6.1.1 Worst-Case Peak Gain theorem

Without loss of generality, consider a state-space system /-

jg{ x(k+1)

Ax(k)+Bu(k)

(6.1)
Cx(k)+Du(k)

y(k)

where u(k) € R? is the input vector, y(k) € RP the output vector, x(k) € R" the state vector and

AcRV™ BeR"9, CecRP*™ and D e RP*? are the state-space matrices of the system.

Theorem 6.1 (Worst-Case Peak Gain). Let # be a BIBO-stable' n' order state-space sys-
tem with q inputs, p outputs. If an input signal {u(k)}y¢ is bounded in magnitude by & (i.e.
Vk=0, |u;(k)l<u;, 1<i<gq), then the output y(k) is (element-by-element) bounded by

Yk, lyl={F)u (6.2)

where ({(A)) e RP*1 s the Worst-Case Peak Gain matrix [10] of the system. It can be computed
as the ¢1-norm of the system’s impulse response. In case of a state space, this norm can be
computed with:

(7)) =D+ Y |CAkB(. 6.3)
k=0

Proof. Let (k) be the impulse response matrix? of the system at instance %, i.e. hh; ;(k) is the
response on the i output to the impulse at time % = 0 on the j input. With (6.1), we have

D ifk=0
h(k) = (6.4)
CA* 1B ifk>0.

Since the input {u(k)};>0 can be seen as a weighted sum of impulses (see Chapter 1), and
thanks to the linearity and time invariance property of LTI systems [31], we get

k
y&) =Y hDulk -1). (6.5)
=0

({¥}r>0 is the result of the convolution of {lh}z>¢ by {#}zr>0).Then the output is (element-by-
element) bounded by

ly(R)] < ali |h(l)|, VEk=0. (6.6)

Finally B
VE=0, |y(k)l< (2|h(k)|) i. (6.7)
By writing explicitly the impulse response (6.4) in (6_.7) we can directly obtain (6.3). |

Tie. p(A) <1, see Property 1.1 on p.23
2Here, we exceptionally use a lowcase bold notation for a matrix.

83

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

Remark 6.1. An important remark is that it is possible to find a finite input signal {u(k)}o<r<k
that yields an output that approaches the ({(#€))u up to any arbitrarily small distance.
Indeed, in (6.6), we obtain the equality for the i output if the input is such that

uj(l):ﬁj-sign(]hij(k—l)), VOo<l<k, VO0<j=gq (6.8)
where sign(x) returns +1 or 0 depending on the sign of x.

Remark 6.2. This proposition can be completed when considering intervals for the input, instead
of bounds (corresponding to symmetric intervals). In that case, the Worst-Case Peak Gain matrix
indicates by how much the radius of the input interval is amplified on the output [39].

Remark 6.3. From (6.7) we see that the WCPG is actually the ¢1-norm of a filter’'s impulse
response. Therefore, in what follows we will use the term WCPG instead of ¢1-norm.

Obviously, the infinite sum in (6.3) cannot be computed exactly. However, we may need to
compute an arbitrarily precise approximation:

» when we determine the dynamic range of the filter’s states and outputs. If the computed
bound is very close to the power of 2, we might require to increase the accuracy of the
bound (in order to be sure not to overestimate);

» we compute an approximation on a transfer function of a filter using Algorithm 11.5 from
Chapter 5 we must compute the £1-norm, which is just the WCPG;

+ we must provide rigorous error-analysis of a finite-precision implementation of a filter, as
we shall see in the next Chapter.

Hence, the problem can be formulated as follows:

Problem |

Given a small € > 0 compute an approximation S on the WCPG matrix ((#)) such that

|((7#)); j—-S;j|<e fori=0,...,pand j=0,...,q (6.9)

Of course, we need to first truncate the sum to some finite number of terms N (further called
truncation order). In practice, some “sufficiently large” truncation order is often chosen, e.g. 500
or 1000 terms. The following example demonstrates that it may be very dangerous.

Example 6.1. Consider a stable 5 order random SISO filter*. A naive computation of the WCPG
in double precision with 1000 terms in the sum (6.3) yields {((F€)) naive = 105.66. Suppose all

SMotivated reader can find exact coefficients in the Appendix 3.1

84

6.1. STATE OF THE ART

200 ‘ ‘
—— naive bound
—— worst-case output

100

—100

_2 | | | |
00, 400 800 1,200 1,600 2,000

k

Figure 6.1: Worst-case output is out of the naively determined bounds.

the inputs are in the interval [-1,1]. Then, according to the WCPG theorem, outputs must be in
the interval [-105.66,105.66].

Now, consider the input signal from Remark 6.1, i.e. the one that yields the worst-case output.
Figure 6.1 demonstrates that it easily goes out of the bounds determined by the naive WCPG. It
reaches the value 192.2 in just two thousand iterations.

In [10] Balakrishnan and Boyd propose “simple” lower and upper bounds on the truncation
order. However, they describe their algorithm in terms of exact arithmetic, i.e. do not propose
any error analysis. This iterative algorithm has several difficulties: first of all, there is a matrix
A exponentiation, which would require a non-trivial error analysis. Second, on each iteration
(the quantity of which may reach a high order) a solution of Lyapunov equations [117—-119]
is required for which there exists no ready-to-use solution with rigorous error bounds on the
result. Therefore, numerically computing a reliable lower bound on the truncation order N is not
possible with this approach as it is.

A competing approach would be not to start with truncation order determination but to
immediately go for summation and to stop when adding more terms does not improve accuracy.
For example, if we try increasing the truncation order in the Example 6.1, we obtain the dynamic
of the WCPG approximations shown on Figure 6.2.

However, naive computation of terms in (6.3) with double-precision arithmetic may yield
significant rounding errors and would not allow the final approximation error to be bounded in an

85

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

o 800

[l

=

o 600 1
=

=i

o

o400 | |
3

=

g

g 200 |
=

o

o

< | | | |

1 2 3 4 5

Truncation order 104

Figure 6.2: The approximations of the WCPG with the increase of truncation order.

a priori way by an arbitrary . Even if the computations were performed using multiple precision
arithmetic, we would need to determine the required precision (and prove it) without yet knowing
how many operations would be performed in the end.

Therefore, in the following we propose a new approach on the evaluation of the WCPG in
multiple precision. Our goal is to not only perform rigorous error analysis of approximations but
also to deduce the required accuracy for each computation in the evaluation of the WCPG. By
adapting the precision of intermediate computations we achieve an a priori bound on the overall
approximation error.

Notation: In further discussions we bound the error matrices with respect to their Frobe-
nius norm. The Frobenius norm is sub-multiplicative and has several good properties used in
numerical analysis. Let K be some matrix, K € C**™, then

|Kij|<IKlp Yi,j (6.10)
IKl2 < K| <+vmin(m,n)[Kllz, (6.11)

where ||K || is the spectral-norm, i.e. equal to the largest singular value of K.
Let K be a square n x n matrix with | K|z <1, then for all &, |K* |, <1 and |K*|| < V/n.

6.2 Algorithm for Worst-Case Peak Gain evaluation

Given a BIBO stable LTI filter in state-space realization (6.1) and ¢, a desired absolute ap-
proximation error, we want to determine the Worst-Case Peak Gain matrix ((/#)) of this filter,
defined in (6.3). While computing such an approximation, various errors, such as truncation and
summation errors, are made.

86

6.2. ALGORITHM FOR WORST-CASE PEAK GAIN EVALUATION

Algorithm lll.1: Floating-point evaluation of the Worst-Case Peak Gain
Input: AcF*** BeF"*9,CeFP** DeFP*? >0
Output: Sy e FP*9

step1: Compute N
step 22 Compute V from an eigendecomposition of A
T—inv(V)e A’V
if | T2 > 1thenreturn L
step3: B' —inv(V)®B
C'—CaV
S—l‘_|D|, P—l‘_In
for £ from 0 to N do
Step 4: P,—TeoP;, 4
Step 5: L,—CsP,®B
Step 6: Sk <—Sk_1 ®abs(Lp)
end
return Sy

Instead of directly computing the infinite sum |CAkB| for any & = 0, we will use an approx-
imate eigenvalue decomposition of A (i.e. A = VT'V~1) and compute the floating-point sum
|CVT*V-1B|for0<k <N.

Our approach to compute the approximation Sy of ((/)) is summarized in algorithm [l1.1
where all the operations (®, @, inv, abs, etc.) are floating-point multiple precision operations
done at various precisions to be determined such that the overall error is less than e:

|((A)) —SN|<e. (6.12)

The overall error analysis is decomposed into 6 steps, where each one expresses the impact
of a particular approximation (or truncation), and provides the accuracy requirements for the
associated operations such that the result is rigorously bounded by ¢. These steps are discussed
in detail in Sections 6.3 and 6.4:

Step 1: Let ((#))n be the truncated sum
N

()N =) [CA*B|+DI. (6.13)
k=0

We compute a truncation order N of the infinite sum (()) such that the truncation error is less
than g1 > 0:
(AN = (AN < €1. (6.14)

See Section 6.3 for more details.

87

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

Step 2: Error analysis for computing the powers A”* of a full matrix A, when the % reaches
several hundreds, is a significant problem, especially when the norm of A is larger than 1 and
its eigenvalues are close to 1. However, if A may be represented as A = XEX ! with E € C**"
strictly diagonal and X € C**™*, then powering of A reduces to powering the diagonal matrix E,
which is more convenient.

Suppose we have a matrix V approximating X. We require this approximation to be just
quite accurate so that we are able to discern the different associated eigenvalues and be sure
their absolute values are less than 1.

We may then consider the matrix V to be exact and compute an approximation Tto V-1 AV
with sufficient accuracy such that the error of computing VT*V -1 instead of matrix A is less
than €9 > 0:

< &9. (6.15)

N
NN - Y. [cvTHVIB|
k=0

See Section 6.4.1 for more details.

Step 3: We compute approximations B’ and C’ of V™'B and CV, respectively. We require
that the propagated error committed in using B’ instead of V1B and C’ instead of CV be less
than e3> 0:

< 3. (6.16)

N N
Y [cvrtvB|- Y |c'T'B
k=0 k=0

See Section 6.4.2.

Step 4: We compute in P, the powers T* of T with a certain accuracy. It is required that
the propagated error be less than g4 > 0:

<e4. (6.17)

N N
Y |cT*B|- Y |c'P.B
k=0 k=0

See Section 6.4.3.

Step 5: We compute in L;, each summand C'P;B’ with a error small enough such that the
overall approximation error induced by this step is less than €5 > 0:

< &s5. (6.18)

N N
Y |C'PyB'[-) Lyl
k=0 k=0

See Section 6.4.4.

88

6.3. TRUNCATION ORDER AND TRUNCATION ERROR

Step 6: Finally, we sum L, in S with enough precision so that the absolute error bound
for summation is bounded by £¢ > 0:

N
Y Lyl -Sn
k=0

< &6 (6.19)

See Section 6.4.5.

By ensuring that each step verifies its bound ¢;, and taking €; = ée, we get €1 +eg +e3+
g4+ 65+ €6 < g, hence (6.12) will be satisfied if inequalities (6.14) to (6.19) are.

Our approach hence determines first a truncation order N and then performs summation up
to that truncation error, whilst adjusting precision in the different summation steps.

6.3 Truncation order and truncation error

In this Section we propose a direct formula for the lower bound on N along with a reliable
evaluation algorithm.

The goal is to determine a lower bound on the truncation order N of the infinite sum (6.3)
such that its tail is smaller than the given €. Obviously, ((/£))y is a lower bound on ({(/#)) and
increases monotonically to ((/)) with increasing N. Hence the truncation error is

() - (N = Y. |CAMB|. (6.20)
k>N

6.3.1 A bound on the truncation error

Many simple bounds on (6.20) are possible. For instance, if the eigendecomposition of A is
computed

A=XEX! (6.21)

where X € C™*" is the right hand eigenvector matrix, and E € C**" is a diagonal matrix holding
the eigenvalues A;, the terms CA*B can be written

n
CA*B = ®E*Y = ZZ RIAf (6.22)
=1

where ® e CP*" W € C"*? and R; € CP*9? are defined by

®:=CX, v:.=X!B, (R);; =0y, (6.23)

89

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

In this setting, we obtain

() — (TNl = Y Z|R;Ak| (6.24)
k>Nl=

As required by Proposition 6.1, all eigenvalues A; of matrix A must be strictly smaller than
one in magnitude. We may therefore notice that the outer sum is in geometric progression with a
common ratio |A;| < 1. So the following bound is possible (we remind the reader that inequalities
and absolute values are considered to be element by element):

o0
() - (TN < Y. Z|R;||Ak| (6.25)
k=N+1l=
n |AN+1|
; -1
2Ry (AN
= p(aN*+ () : 6.26
=p Z — 01 o) (6.26)
Since % < 1 holds for all terms, we may leave out the powers. Notate
- Rl Al
e RP*Y, 6.27
M= T v €27
The tail of the infinite sum is hence bounded by
|(7)) — (FE) | < p(AN M. (6.28)
Remark 6.4. Other bounds are possible. For instance,
IR;| (1A \E
(T — (TN N < pAN 1K (. YN>K. 6.29
Ni=P Z “TAl \p(a) (6.29)

This bound takes into account the weight of each eigenvalue.

Remark 6.5. A similar bound for the truncation error may be obtained when the eigenvalues of
the system are not distinct, i.e. when matrix A has multiple eigenvalues. The impulse response
will be [120]

D ifk=0

J(k)= m; 6.30
i ¥ R, 1)(k(J2)1)$k j+1) Ak “J k>0 (6.30)
i=1/=1

where pole A; has multiplicity m;, i =1...n. An appropriate matrix M can be then deduced.

90

6.3. TRUNCATION ORDER AND TRUNCATION ERROR

6.3.2 Deducing a lower bound on the truncation order

In order to get (6.28) bounded by €1, it is required that element-by-element
p(ANTIM <¢;.

Solving this inequality for N leads us to the following bound:

N log% 6.31
> | —— 1
~ | logp(A) (6:31)

where m is defined as m := nilinMi,j.

However we cannot compﬁte exact values for all quantities occuring in (6.31) when using
finite-precision arithmetic. We only have approximations for them. Thus, in order to reliably
determine a lower bound on N, we must compute lower bounds on m and p(A), from which
we can deduce an upper bound on logfn—1 and a lower bound on log p(A) to eventually obtain a
lower bound on N.

Due to the implementation of (6.21) and (6.23) with finite-precision arithmetic, only approxi-
mations on A, X, ®,¥,R; can be obtained. There exist many floating-point libraries, such as
LAPACK?, providing functions for an eigendecomposition as needed for (6.21) and to solve
linear systems of equations in (6.23). They usually deliver good and fast approximations to the
solution of a given numerical problem but there is neither verification nor guarantee about the
accuracy of that approximation. LAPACK only gives an estimation of the absolute error which
we will nevertheless exploit in our approach.

We propose to combine LAPACK floating-point arithmetic with Interval Arithmetic [121]
enhanced with Rump’s Theory of Verified Inclusions [67-69, 122] in order to obtain trusted
intervals on the eigensystem and, eventually, a rigorous bound on N.

The Theory of Verified Inclusions is a set of algorithms that compute guaranteed bounds
on solutions of various numerical problems. The verification process is performed by means of
checking an interval fixed point and yields to a trusted interval for the solution, i.e. it is verified
that the result interval contains an exact solution of given numerical problem.

It permits us to quickly obtain trusted error bounds on the truncation order without significant
impact on algorithm performance, since this computation is done only once. In addition, if the
spectral radius of A cannot be shown less than 1, we stop the algorithm.

Using the ideas proposed by Rump in [67], we obtain trusted intervals for the eigensystem
with the following steps:

4http ://www.netlib.org/lapack/

91

http://www.netlib.org/lapack/

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

1. Using the LAPACK eigensolver, we compute floating-point approximations V for the eigen-
vectors X and a for the eigenvalues A, along with error estimates €x and €,. These error
estimates are such that |1 — | <&, and | X — V| < ex should be not far from the truth.

2. We construct, verify and possibly adjust intervals for [A] = [@ —€), ¢+ €3] and [X] =
[V —ex,V +&x] such that for all vectors A’ € [A] there exists a matrix X' € [X] satisfying
AX'=X'-diag(A") and such that for all matrices X' € [X] there exists a vector A € [A] satisfy-
ing AX’' = X' -diag(A’). In this process, first intervals for the eigensystem are constructed from
the error estimates €, and ey as radii and the approximate solutions V and a as mid-points.
Further, these intervals are verified with inclusion algorithms [67]. If the verification does not suc-
ceed, the intervals are extended by some small factor and process is repeated until it succeeds
or until there exists an eigenvalue interval which contains 1.

For the solution of the linear system of equations (LSE) appearing in (6.23), the algorithm for
interval verification is based on [69] and consists of two steps:

1. Using LAPACK, compute a floating-point approximation € on the solution of VW = B along
with an error estimate ey such that |¥ — | < ey should be not far from the truth.

2. Construct, verify and adjust intervals [¥] = [Q — ey, Q + £y] such that for all matrices X' €
[X] there exists W' € [¥] such that X"¥' = B holds.

The intervals for verification are constructed in the same way as for the eigensystem solution. We
require the existence of the exact solution of the linear system not for VW = B but for [X]¥Y =B,
i.e. [¥] must contain the exact solution for each element of the already verified interval [X].

Finally, the intervals for (6.23), (6.27) and (6.31) are computed with Interval Arithmetic. Our
complete algorithm to determine a reliable lower bound on N is given with algorithm II1.2.

6.4 Summation

Once the truncation order determined, we need to provide a summation scheme which is reliable
in floating-point arithmetic, i.e. such that the error of computations is bounded by an a priori
given value. To do so we propose to perform all operations in multiple precision arithmetic
whilst adapting precision dynamically where needed. Several multiple precision algorithms were
therefore developed:

» multiplyAndAdd(A,B,C,6) that computes A -B + C + A, where the error matrix A is
bounded by |A| < &, for the given a priori bound 6. We shall notate A ® B for the output of
multiplyAndAdd when C is the zero matrix.

92

6.4. SUMMATION

Algorithm 111.2: Lower bound of truncation order
Input: AcF** BeF"*9,CeFP*" g1 >0
Output: N eN

1 a,V,eq, ey — LAPACK eigendecomposition for A;

2 Q,ey — LAPACK solver for VWV = B;

3 [AL,[X]— Eigensystem verification algorithm;

4 [WY]— LSE solution verification algorithm;

5 [@] — C[X];

6 [R;l;; —[®;;1[¥;;];

7 [p] *m?XI[Ai]I;

no ||
M-z -] Dol

[m]<—IIL,liJIl|[M]i,j|;

log 2L
10 N«—sup([lzi[[’;ﬂ);

11 return N

©

» sumAbs(A,B,§) that computes A +|B|+ A, where the error matrix A is bounded by |A| < §,
for the given §. With a slight notational abuse, we shall also notate A ® abs(B) for sumAbs.

« inv(V, &) that computes the inverse V1 + A, where the error matrix A is bounded by |A| < &,
for the given 6. See Section 6.5.

These computation kernels adapt the precision of their intermediate computations where needed.
The algorithms we use for these basic bricks will be discussed in Section 6.5.

6.4.1 Step 2: using the Eigendecomposition
6.4.1.1 Error propagation

As seen, in each step of the summation, a matrix power, A%, must be computed. In [46]
Higham devotes an entire chapter to error analysis of matrix powers but this theory is in most
cases inapplicable for state matrices A of linear filters, as the requirement p(|A|) < 1 does not
necessarily hold here. Therefore, despite taking A to just a finite power %, the sequence of
computed matrices may explode in norm since £ may take an order of several hundreds or
thousands. Thus, even extending the precision is not a solution, as an enormous number of bits
would be required.

In real life the state matrices are usually diagonalizable, i.e. there exists a matrix X € C**"
and diagonal E € C**" such that A = XEX 1. Then A* = XE*X~1. A good choice of X

93

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

and E are the eigenvector and eigenvalue matrices obtained using eigendecomposition (6.21).
However, with LAPACK we can compute only approximations of them and we cannot control
their accuracy. Therefore, we propose the following method to almost diagonalize matrix A. The
method does not make any assumptions on matrix V' except for it being some approximation on
X . Therefore, for simplicity of further reasoning we treat V' as an exact matrix.
Using our multiprecision algorithms for matrix inverse and multiplication we may compute a
complex n x n matrix T
T:=V 1AV - Ay, (6.32)

where V € C**" is an approximation on X, Ag € C**" is a matrix representing the element-by-
element errors due to the two matrix multiplications and the inversion of matrix V.

Although the matrix E is strictly diagonal, V is not exactly the eigenvector matrix and
consequently T is a full matrix. However it has its prevailing elements on the main diagonal.
Thus T is an approximation on E.

We require for matrix T to satisfy |T']lg < 1. This condition is stronger than p(A) < 1, and
Section 6.4.1.2 provides a way to test it. In other words, this condition means that there exist
some margin for computational errors between the spectral radius and 1.

Notate Zj, := (T + Ag)* — T*. Hence =, € C**" represents the error matrix which captures
the propagation of error Ag when powering T'. Since

AP =V(T+A)*V (6.33)

therefore
CA*B=CcVT'*V'B+CVZE,V'B. (6.34)

Thus the error of computing VT*V ! instead of A* in (6.13) is bounded by

N N
3 |CAkB)—) |CVTkV—lB| < (6.35)
k=0 k=0
N N
Y |ca*B-cvTtv'B|< Y |cVE,vB|. (6.36)
k=0 k=0

Here and further on each step of the algorithm we use inequalities with left side in form
(6.36) rather than (6.35), i.e. we will instantly use the triangular inequality |lal — 61| < |a — b
Va,b applied element-by-element to matrices.

In order to determine the accuracy of the computations on this step such that (6.36) is
bounded by €2, we need to perform detailed analysis of E;, with spectral-norm. Using the
definition of E;, the following recurrence can be easily obtained:

I1Z%llg < IEz-1llg + I A2ll2 (1Er-1llp + 1) (6.37)

94

6.4. SUMMATION

If IZx-1lls < 1, which must hold in our case since Ej represent an error-matrix, then
1Zelle < 12p-1llg + 2| A2ll2 (6.38)

As |E1lls = | Agllo we can get the desired bound capturing the propagation of Ay with
Frobenius norm:

IZ:1F < 2Vnk+ 1) Azlp. (6.39)

Substituting this bound to (6.36) and folding the sum, we obtain

N
> |CVE,V'B|<BlAslF ICVIF |V B, (6.40)
i=0

with 8 = /n(N + 1)(N +2). Thus, we get a bound on the error of approximation of A by VI'V~1L.

Since we require it to be less than €2 we obtain a condition for the error on the inversion and two

matrix multiplications:
€2

1
BICVIp|V-B|,

Using this bound we can deduce the desired accuracy of our multiprecision algorithms for

IA2lF <

(6.41)

complex matrix multiplication and inverse as a function of &s.

6.4.1.2 Checking [T <1

Since ||T||§ = p(T*T), we study the eigenvalues of T*T, where “x” denotes conjugate trans-
pose. According to Gershgorin’s circle theorem [123], each eigenvalue y; of T*T is in the disk
centered in (T*T);; with radius ¥ ; [(T*T);|.

Let us decompose T into T = F + G, where F is diagonal and G contains all the other terms
(F contains the approximate eigenvalues, G contains small terms and is zero on its diagonal).
DenoteY .:=T*"T-F*F=F*G+G*F+G*G. Then

Y|, =X Ivl

J#i J#i
<(n-1IYlp
<(n-1(2IFlF|Glr+IGI3)
<(n-1)(2vVn+IGIF)IGIF. (6.42)

Each eigenvalue of T*T is in the disk centered in (F* F);; +(Y);; with radius y, where y is equal
to (n-1)(2vn+ Gl) IGlr, computed in a rounding mode that makes the result become an
upper bound (round-up).

95

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

As G is zero on its diagonal, the diagonal elements (Y');; of Y are equal to the diagonal
elements (G*G);; of G*G. They can hence be bounded as follows:

(V)i = |(G*G),;| < 1G5 (6.43)

Then, it is easy to see that Gershgorin circles enclosing the eigenvalues of F*F can be
increased, meaning that if (F*F);; is such that

Vi, |(F*F);|<1-1GI% -y, (6.44)

it holds that p(T*T)< 1 and | Ty < 1.

This condition can be tested by using floating-point arithmetic with directed rounding modes
(round-up for instance).

After computing T out of V and A according to (6.32), the condition on T should be tested
in order to determine if | T'|l¢ < 1. This test failing means that V is not a sufficient approximate of
X or that the error Ag done computing (6.32) is too large, i.e. the accuracy of our multiprecision
algorithm for complex matrix multiplication and inverse should be increased. The test is required
for rigor only. We do perform the test in the implementation of our WCPG method, and, on the
real-world examples we tested, never saw it give a negative answer. In case when matrix T'
does not pass check our algorithm is programmed to return an error.

6.4.2 Step 3: computing CV and V™'B

We compute approximations on matrices CV and V!B with a certain precision and need
to determine the required accuracy of these multiplications such that the impact of these
approximations is less than es.

Notate C':= CV +As, and B’ := V!B + Ag,, where Az, € CP*" and As, € C**Y are
error-matrices containing the errors of the two matrix multiplications and the inversion.

Using Frobenius norm, we can bound the error in the approximation of CV and V~!B by C’
and B’ as follows:

M=

‘CVTkV‘lB _C'T"B| <
k=0
N
Y |As T*B'+C'T" As, + As T Ay | . (6.45)
k=0
Since ||T |2 < 1 holds we have (using Frobenius norm properties)
|As T B+ C'T* Mg, + A T A, | < (6.46)

Va([Ase o (1Bl 7+ | Ass]|) + €]l | Ass]) -

96

6.4. SUMMATION

This bound represents the impact of our approximations for each £ =0...N. If (6.46) is
bounded by ﬁ -£3, then the overall error is less than €3. Hence, bounds on the two error-
matrices are:

1 1 €3
”A3c”FS3\/ﬁ'N+1HC/HF
A < 1 1 €3
” 3BHF_3\/E'N+1||B’“F'

(6.47)

(6.48)

Therefore, using bounds on ||As, ||z and ||As, ||z, we can deduce the required accuracy of
our multiprecision matrix multiplication and inversion according to €3.

6.4.3 Step 4: powering T

Given a square complex matrix T with prevailing main diagonal we need to compute its ™
power. Notate
P,:=T¢-1I,, (6.49)

where IT, € C**" represents element-by-element the error on the matrix powers, including error
propagation from the first to the last power. Using the same simplification as in (6.35) and (6.36)
we get the error of computing the approximations Pj, rather than the exact powers bounded by

N N
Y |c'T*B' -C'P,B/|< Y [C'ILB|. (6.50)
k=0 k=0

Thus a bound on a norm of I, say Il |z, is required.
Since we need all the powers of T from 1 to N, we use an iterative scheme to compute
them. It is then evident that we may write the recurrence

P,=TP; 1+T1}, (6.51)

where T';, € C"*™ is the error matrix representing the error of the matrix multiplication at step .
With Po =1, Py =T and using (6.51) we obtain

k
P,=T:+) TF T, (6.52)
1=2
Using the condition || T'||o < 1 and properties of the Frobenius norm we get
k

Z Tk_lrl
=2

Mgl 7 <

k
<vaY ITlp. (6.53)
F =2

97

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

Therefore the impact of approximation of the matrix powers is bounded by
N N
Y |CMB | = Ve + 1)) ||C |z 1Tz ||B| £ (6.54)
k=0 1=2

Obviously, if the error of matrix multiplication I'; satisfies

1 1 &4

1
Lillp<—=- ' '
l l||F<\/ﬁ N-1 N+1 |C|z|B|r

(6.55)

for l =2...N, then we have (6.54) to be less than 4.
Using (6.55) we may now deduce the required accuracy of matrix multiplications on each
step in dependency of e4. First, denote the right side of (6.55) as y. We must guarantee that the

n n
error-matrix I satisfies |||z <, or in other words, that ¥ Y |I‘i’j|2 < 2. We can strengthen
i=1j=1

the requirement on T by requiring for all i, j that n2 max|l"i,j|2 < yz. This inequality holds if, for
2
instance, |ri’j| < % Thus, to guarantee the bound (6.55) it is sufficient to call our basic brick

2
algorithm multiplyAndAdd with the element-by-element absolute error bound 6 = %

6.4.4 Step 5: computing L,

Once the matrices C’, B’ and P, are pre-computed and the error of their computation is bounded,
we must evaluate their product. Let L;, be the approximate product of these three matrices at
step k:

L,:=C'P,B'+7Y,, (6.56)

where Y;, € CP*? is the matrix of element-by-element errors for the two matrix multiplications.
N

Then it may be shown that the error of computations induced by this step is bounded by Y |Yl.
k=0

If we want the overall error of approximation on this step to be less than €5 then we can_easily
deduce the required accuracy of each of those multiplications on every iteration of summation
algorithm.

6.4.5 Step 6: final summation

Finally the absolute value of the L, must be taken and the result accumulated in the sum. We
remind the reader that if all previous computations were exact, the matrix L, would be a real
matrix and the absolute-value-operation would have been an exact sign manipulation. However,
as the computations were in finite-precision arithmetic, L, is complex with a small imaginary part,
which is naturally caused by the errors of computations and must not be neglected. Therefore
the element-by-element absolute value of the matrix must be computed.

98

6.5. BASIC BRICKS

Since we perform N + 1 accumulations of absolute values in the result sum Sy, it is evident
that bounding the error of each such computation by ﬁee is sufficient.

Therefore, using this bound for each invokation of our basic brick algorithm sumAbs we
guarantee bound (6.19).

6.5 Basic bricks

In Section 6.4, we postulated the existence of the following three basic floating-point algorithms:
multiplyAndAdd, sumAbs and inv, computing, respectively, the product-sum, the sum in
absolute value and the inverse of matrices. Each of these operators was required to satisfy an
absolute error bound |A| < § to be ensured by the matrix of errors A with respect to scalar 9,
given in argument to the algorithm.

Ensuring such an absolute error bound is not possible in general when fixed-precision
floating-point arithmetic is used. Any such algorithm, when returning its result, must round
into that fixed-precision floating-point format. Hence, when the output grows sufficiently large,
the unit-in-the-last-place of that format and hence that final rounding error in fixed-precision
floating-point arithmetic will grow larger than a set absolute error bound.

In multiple precision floating-point arithmetic, such as offered by software packages like
MPFR® [124], it is sometimes possible to develop algorithms that will generically determine the
output precision of the floating-point variables they return their results in. Hence an absolute
error bound as the one we require can be guaranteed. In contrast to classical floating-point
arithmetic, such as Higham analyzes, there is no longer any clear, overall computing precision,
though. Variables just bear the precision that had been determined for them by the previous
computation step.

This preliminary clarification made, general description of our three basic bricks sumAbs,
inv and multiplyAndAdd is easy. See Appendix 2 for detailed description of the error analysis
behind our approach.

For sumAbs(A,B,6) = A + |B|+ A, we can reason element by element. We need to approxi-
mate A;; +1/RB;;? + 3B;,;* with absolute error no larger than &, where Rz and 3z are the real
and imaginary parts of the complex z. This can be ensured by considering the floating-point
exponents of each of A;;, RB;; and IB;; with respect to the floating-point exponent of 4.

For multiplyAndAdd(A,B,C,6)=A-B+C+A, we canreason in terms of scalar products
between A and B. The scalar products boil down to summation of products which, in turn, can
be done exactly, as we can determine the precision of the A;;, and By ;. As a matter of course
the very same summation can capture the matrix elements C;;. Finally, multiple precision

5http: //www.mpfr.org/

99

http://www.mpfr.org/

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

floating-point summation with an absolute error bound can be performed with a modified,
software-simulated Kulisch accumulator [56], which does not need to be exact but bear just
enough precision to satisfy the absolute accuracy bound 6.

Finally, once the multiplyAndAdd operator is available, it is possible to implement the
matrix inversion algorithm inv using a Newton-Raphson-like iteration [125]:

U, — some seed inverse matrix for V=1
R, —VU,-1I, (6.57)
Upi1<—Ur-UrR

where the iterated matrices U}, converge to V! provided the multiplyAndAdd operations
computing R, and U}1 are performed with enough accuracy, i.e. small enough § and the seed
matrix satisfies some additional properties. In order to ensure these properties with an explicit
check, an operator to compute the Frobenius norm of a matrix with a given a priori absolute
error bound § is required. Implementing such a Frobenius norm operator again boils down to
summation, as above.

6.6 Numerical examples

The algorithms discussed above were implemented in C, using GNU MPFR version 3.1.12, GNU
MPFI8 version 1.5.1 and CLAPACK? version 3.2.1. The source code is available online®. Our

implementation was tested on several real-life and random examples:

» The first example comes from Control Theory: the LTI system is extracted from an active
controller of vehicle longitudinal oscillation [126], and WCPG matrix is used to determine the
fixed-point arithmetic scaling of state and output.

« The second is a 12M"-order Butterworth filter, described in p-Direct Form Il transposed [127],
where WCPG is used during the computation of the transfer function.

« The third one is a large random BIBO stable filter (obtained from the drss command of
Matlab), with 60 states, 14 inputs and 28 outputs.

» The last one is our random filter from Example 6.1 with 1 input and 1 output.

6https ://gforge.inria.fr/projects/mpfi/
7http ://www.netlib.org/clapack/
8ht‘cps ://scm.gforge.inria.fr/anonscm/git/metalibm/wcpg.git

100

https://gforge.inria.fr/projects/mpfi/
http://www.netlib.org/clapack/
https://scm.gforge.inria.fr/anonscm/git/metalibm/wcpg.git

6.7. EXTENDING THE WCPG THEOREM TO THE RANGE OF THE STATE VARIABLES

Experiments were done on a laptop computer with an Intel Core i5 processor running at 2.8
GHz and 16 GB of RAM.

The numerical results detailed in Table 6.1 show that our algorithm for Worst-Case Peak
Gain matrix evaluation with a priori error bound exhibits reasonable performance on typical
examples.

Even when the a priori error bound is pushed to compute WCPG results with an accuracy
way beyond double precision, the algorithm succeeds in computing a result, even though
execution time grows pretty high. We see that for our random filter from Example 6.1 the actual
truncation order for a WCPG accurate to double precision is much larger than the initial guess.

Our algorithm includes checks testing that certain properties of matrices are verified, in
particular that p(A) <1 and || T'||l2 < 1. For example, we tested our algorithm on an artificial
system with distance between poles and unit circle less than 2760, Our algorithm correctly
detected that the conditions on the system’s poles are not fulfilled (i.e. LAPACK and inclusion
principles cannot guarantee that p(A) < 1) and refused to compute the result.

6.7 Extending the WCPG theorem to the range of the state
variables

It is easy to apply the WCPG to determine the output interval of state vector as well. For this, we
x(k
“concatenate” the state vector with the system’s output. Denote vector {(%) := (Ek;) eR**P

to be the new output vector. Then the state-space relationship takes the form:
x(k+1) = Ax(k) + Bu(k)

i L) Ty + [0 uee
= X u
C D

(6.58)

Hence, the first n elements of {(k) are just copies of the state vector and the following p
elements are computed just like the initial output y(&).

Applying the WCPG upon the system ; we obtain a bound on (%), i.e. both state and
output vectors of the initial system.

101

col

Example 1 Example 2 Example 3 Example 4
sizesn,pandq n=10, p=11, q=1 n=12, p=1, q=25 n=60, p=28, q=14 n=5 p=1, ¢q=1

1-p(A) 1.39x 1072 8.65x 1073 1.46 x 1072 1.44x 1074

max(Sy) 3.88 x 10! 5.50 x 10° 2.64 x 102 7.72 x 102

min(Sy) 1.29 x 10° 1.0 x 10° 1.82 x 101 7.72 x 102
€ 2—5 2—53 2—600 2—5 2—53 2—600 2—5 2—53 2—600 2—53

N 220 2153 29182 308 4141 47811 510 1749 27485 251510
Inversion iterations 0 2 4 2 3 5 1 2 4 2

overall max precision (bits) 212 293 1401 254 355 1459 232 306 1416 179
Overall execution time (sec) 0.11 1.53 60.06 0.85 11.54 473.20 45.62 177.90 9376.86 5.99

Table 6.1: Numerical results for 2 real-world and 2 constructed example

6.8. WCPG FOR INTERVAL SYSTEMS

6.8 WCPG for interval systems

In our problem statement we assume that the coefficients of filter structures are exactly repre-
sentable in some floating-point format. However, in practical applications coefficients of the filter
structures may be represented as intervals with small radii. This representation may be due to
measurement errors: for instance in closed-loop control systems [128] state-matrices are often
auto-corrected after measurements. To take into account the measurement uncertainty, matrices
are represented as intervals. In this Section we propose several ideas on the computation of the
WCPG of a system whose coefficients are small® intervals.

Absolute value of an interval: there exist several ways to define an absolute value of
an interval number. We are going to use the definition by Neumaier [129], which states that
for an interval number [x] = [x,x], its absolute value is a real number |[x]| € R such that
|[x]l = max {|x|,[x|}. In his work [130], Neumaier shows how to achieve a distributivity for
interval arithmetic.

Notation: to improve the clarity of formulas, in this section we assume that an interval
matrix [M] is centered at M. and has radius AM. We suppose all interval arithmetic to be in
multiple-precision. All matrix inequalities and absolute values are applied element by element.

— Problem }

Given a state-space system # = ([A],[B],[C],[D]), compute an approximation S on the
WCPG

7 =D+ Y [[ClAlB)| (6.59)
k=0

such that two properties are ensured:
1. bound property: ((A#)) < S element-by-element;

2. if coefficients’ radii — 0 and precision — oo then the exact ((A#)) is contained in an ¢
neighborhood of the approximation S for an a priori given small € > 0.

Naive computation of the Worst-Case Peak Gain with interval matrices may yield to interval
explosion due to strong decorrelation. We, on the other hand, propose to adopt the same
approach of six-step truncation and summation.

Truncation: in case of interval matrices we can apply the same approach for the truncation
order computation as in Section 6.3. However, the problem of computing eigenvalues of an
interval matrix arises.

9The width of the intervals is of the order of rounding errors due to double precision.

103

CHAPTER 6. RELIABLE EVALUATION OF THE DYNAMIC RANGE OF AN EXACT FILTER

Eigendecomposition of interval matrix: given an interval matrix [A] centered at A, with
radius AA we need to compute the set [A] which contains the eigenvalue matrices of all A e [A].
To compute the enclosure on A, we use the result of Xu et al. [131] which is based on the
Generalized Gershgorin discs. It can be summarized in the following way.

Denote [E.] = diag([A,],...,[A,]) to be an interval matrix enclosing the eigenvalues of
matrix A.. Let [V .] be an interval matrix of corresponding eigenvectors, i.e. VE € [E] 3V, €[V]
suchthat A, < VCEVgl. Then, the enclosure on the eigenvalues of [A] is a diagonal interval
matrix [E] =diag([11],...,[A,]) such thatfori=1,...,n

[A;]1= [/lci]+iH,-j, (6.60)
J#i
where matrix H = [V 1|AA |[V.]"}|. Xu et al. prove that [A] < [E].

Then, we can compute the enclosure [V] on the eigenvectors corresponding to [E] by
solving the linear systems of interval equations. In [132] Corsaro et al. give a good overview of
the State of the Art on the solution of interval linear systems. For example, Neumaier proposes
in [133] to combine the Interval Gauss Elimination with preconditioning and proves that such
combination gives good results when AA is small.

Finally, using [134—136], we can compute an enclosure on the inverse of an interval matrix.
This operation is required during computation of both truncation order and final summation.

Summation For the summation stage we apply the technique similar to the one discussed in
Section 6.4. The first intuition would be just to simply use interval arithmetic for the computations.
However, to satisfy the second property in the problem statement we must control the precision
of computations of centers and radii of all interval matrices, just like in the floating-point case.

6.9 Conclusion

With this work, a reliable, rigorous multiple precision algorithm to compute the Worst-Case
Peak Gain matrix has been developed. It relies on Theory of Verified Inclusion, eigenvalue
decomposition to perform matrix powering, some multiple-precision arithmetic basic bricks
developed to satisfy absolute error bounds and a detailed step-by-step error analysis. A C
library'® has been developed and now can be used in our automatic code generator.

To conclude, for a given MIMO filter in state-space representation we can now reliably
determine the dynamic range of the output signal, including the worst-case values. Moreover,
our algorithm easily extends to the determination of dynamic range of the state variables as well,

1Ohttps ://scm.gforge.inria.fr/anonscm/git/metalibm/wcpg.git

104

https://scm.gforge.inria.fr/anonscm/git/metalibm/wcpg.git

6.9. CONCLUSION

which we demonstrate in the next Chapter together with the determination of FxP formats for all
variables. Through the conversion between the SIF and state-space representations we may
easily deduce the dynamic range for the temporary variables as well.

Since WCPG is just the £1-norm of the filter's impulse response, our algorithm ensures
reliable computation of a digital filter’s transfer function (see Chapter 5). We shall also see in the
next Chapter that rigorous error analysis of a finite-precision implementation is based on the
accurate Worst-Case Peak Gain measure.

However, some efforts are still required to overcome double precision eigenvalue decom-
position in LAPACK (specially for close-to-instability LTI systems) by using a multiple precision
eigensolver. Additionally, as the proofs on the error bounds are pretty complicated, they should
be formalized in a Formal Proof Checker, such as Coq or HolLight.

Another point to be investigated is the distribution of the error budget among computation
stages. At the moment we are using an equal distribution between all six stages. It would be
interesting to see whether increasing truncation error (hence, decreasing number of terms to be
summed) can be beneficial for the speed of the computations. Our intuition is that in terms of
time, the dependency between number of terms and accuracy is somewhat linear and, therefore,
changing error budget repartition does not bring a real improvement.

We have also proposed a modification of our algorithm for the case of interval matrices. The
interval WCPG can be beneficial in implementation of uncertain systems, when uncertainties are
due to limited precision of measurements. However, the bottleneck of the proposed approach
is the width of the interval matrices: increasing intervals’ radii may yield to singularities in the
intermediate computations.

105

CHAPTER

DETERMINING RELIABLE FIXED-POINT FORMATS

nce the dynamic range of all variables is determined using the WCPG, we must

determine the Fixed-Point formats of all variables for an implementation. At this step we

determine the accuracy of the output and the cost of implementation. Usually, we seek
to minimize the cost (e.g. in terms of memory or power consumption) while satisfying certain
output error bound. To solve this problem, various optimization processes may be applied. To
ensure satisfactory optimization time, the evaluation of the FxP formats and output error for each
given set of wordlength constraints must be fast.

The goal is, given realization coefficients and wordlength constraints, to determine the
Most and the Least Significant Bit (MSB and LSB respectively) positions that will ensure that
no overflow occurs. We must also determine the worst-case error bound on the implemented
system. We remind the reader that we consider the case of recursive LTl filters. The difficulty in
implementation of those filters comes from the non-linear propagation of computational errors
from one filter iteration to another. Even small rounding errors may be significantly amplified
and accumulated through the feedback loop. On top of that, the computation of the FxP formats
is based on the estimation of the dynamic range which is an approximated measure. We will
show how to rigorously take the eventual approximation error into account and ensure that we
compute MSB positions either exactly or overestimate them by at most 1 bit.

In the following we propose a novel analytical approach for determination of the FxP formats
for an arbitrary filter realization. We use SIF to encompass all LTI filter realizations but again, we
demonstrate our approach on state-space structures.

This work is based on an article published at the 49" Asilomar Conference on Signals and
Systems in 2015 [13].

7.1 Determining the Fixed-Point Formats

Existing approaches Usually, an idea on the behavior of computational errors in linear filters
can be obtained via bit-true simulation [80, 82] of the FxP implementation and then comparison
with a reference (floating-point) simulation. The advantage of such technique is that it can be

107

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

applied to any realization. An obvious drawback is that simulations may not be exhaustive and
comparison is not done with an exact filter but with a floating point, i.e. finite-precision, evaluation.
Thus, no guarantee on the result can be obtained with this approach. Moreover, simulations may
take significant time [83].

Another way is to apply analytical approaches once a mathematical expression of a nu-
merical accuracy metric is determined. For example, using Interval Arithmetic [84, 85] or Affine
Arithmetic [87—-89]. These approaches may be more or less efficient, i.e. the dynamic range
estimation is relatively fast, but they do not support all kinds of systems. If a new structure is
developed, a corresponding analysis approach must be adopted too.

Thus, a new rigorous methodology must be developed. The idea to use the WCPG theorem
has already been there for a while [10, 137] but without guarantee on the evaluation of the
WCPG it was not rigorous. Moreover, numerous details such as the errors of computation of
MSBs and taking into account the propagation of computational errors when determining MSBs
were not worked through. In the following we propose a rigorous approach that accounts for all
details and proposes a complete methodology for the reliable FxP implementation.

Problem statement The problem of determining the FxP formats for a filter realization # can
be formulated as follows. Let . be an n'" order stable filter in state-space representation:

Ax(k)+Bu(k)
Cx(k)+Du(k)

(7.1)

{ x(k+1)
y(k)

with ¢ inputs and p outputs.

Suppose all the inputs to be in an interval bounded by @: V& |u;(k)| <@; fori =0,...,q and
that no other information on the spectrum of the input signal is available.

Let w, € Z" and w, € Z” be vectors with wordlength constraints on the state and output
variables respectively. We wish to determine the least MSB positions m,. and m,, that will ensure
that no overflow occurs (see Chapter 2 Section 2.1), i.e. we seek m, and m, such that

VE, y(k)e[-2™r;2my —gmy~Wwytl] (7.2)
VE, x(k)e[-2Mx;2M: — gma—twrtl] (7.3)

Since the filter A is linear and input interval is centered at zero, the output interval is also
centered at zero. This leads to the following formulation of the problem:

108

7.1. DETERMINING THE FIXED-POINT FORMATS

— Problem |

Given a filter realization # in the state-space form (7.1), determine the least MSB positions

m, and m, for the output and state vectors respectively such that

Vk, |y(k)| < 2™y —2my Wyt (7.4)
VE, |x(k)| <2Ms — oM watl (7.5)

7.1.1 Applying the WCPG to compute MSB positions

Applying the WCPG theorem on the filter # yields a bound on the output interval:
Vk lyi(R) = (AN ua);, i=1,...,p. (7.6)

Let y := ((A°)) & be the bound vector. Then, we can determine the FxP formats for the output of
a LTI filter A with the following lemma.

Lemma 7.1. Let # =(A,B,C,D) be a BIBO-stable MIMO LTI filter and & be a bound on the
input interval. Suppose the wordlengths w,, are known andw,, >1,i=1,...,p.
Iffori=1,...,p the MSBs are computed with

m, = [logy(5:) ~logy (1-2")| (7.7)

and the LSBs are computed with £, = my, + 1w, then for all k |y;(k)| < 2™ — 2™y Wy +1

and m,, is the least.

Proof. We look for the least m,, such that (7.4) holds. Using the definition of two’s complement
FxP format from Chapter 2 Section 2.1 and the fact that the bound ¥ can be reached, it is
sufficient to require that:

F; < 2Mv — QM Wyt (7.8)
Solving this inequality for m,, we obtain that the smallest integer, which satisfies the above

inequality is given by (7.7). |

7.1.2 Modification of filter # to determine bounds on the state variables

Using Lemma 7.1 we can determine the FxP formats for the output of a filter. In order to
determine the FxP formats for the state variables, we modify the filter # like in Section 6.7.

109

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

x(k)

Denote vector {(k) := (
y(k)

) to be the new output vector. Then the state-space relationship

takes the form:
x(k+1) = Ax(k) + Bu(k)
£(k) = (!)x(k) + (0)u(k) ' 79)
C D
Performing the concatenation of wordlength constraints vectors w, and w, gives w; € Z"*P.
Hence the problem is to find the least MSB vector m; such that (element-by-element)

VE, [L(k)| <2m —gmiwetl (7.10)

Now, applying the WCPG theorem on the filter #; and using Lemma 7.1, we can deduce the
MSB positions of the state and output vectors for an implementation of the filter #:

my, = [logy @)~ logy (1-2'74)| fori=1,...,n+p. (7.11)

7.2 Taking rounding errors into account

However, due to the finite-precision degradation what we actually compute is not the exact filter
S but an implemented filter Jff:

20k +1) = Op, (AxV(R)+Bu(k))
HE I 0 7.12
¢ {Ok) = Ol(((c)xo(k)+(p)u(k)) 7.12)

where the Sums-of-Products (accumulation of scalar products on the right side) are computed
with some rounding operator .. Suppose, this operator ensures faithful rounding [35], i.e.:

10s(x) — x| < 2¢, (7.13)

where ¢ is the Least Significant Bit position of the operator’s output.

In [42, 138] it was shown that such an operator can be implemented using some extra guard
bits for the accumulation.

Denote the errors due to operator O, as &(k) and &,(k) for the state and output vectors,
respectively. Essentially, the vectors £,(k) and &,(k) may be associated with the noise which is
induced by the filter implementation. Then the implemented filter can be rewritten as

2k +1) AxO(k)+Bu(k) + &,(k)
70 7.14
¢ o) = (I)xo(k) + (0) u(k)+ (O) ey(k) (7.14)
C D I

110

7.2. TAKING ROUNDING ERRORS INTO ACCOUNT

u(k)

— k)
% \C ¢Oh)

(Ex(’“) T J:«k)

ey(k)

Figure 7.1: Implemented filter decomposition.

where
leo(R) < 2%, ey (k)| <2%.

It should be remarked that since the operator ¢); is applied €,(%) # x(k) — x°(k) and £y(k) #
y(k)— y°(k). As the rounding also affects the filter state, the £¥(%) drifts away from x(%) over
time, whereas with &,(%) we consider the error due to one step only.

It can be observed that at each instance of time the state and output vectors are computed
out of u(k) and error-vectors, which can be considered as inputs as well. Thanks to the linearity
of the filters, we can decompose the actually implemented filter into a sum of the exact filter and
an “error-filter” /£ as shown in Figure 7.1. Note that this “error-filter” is an artificial one; it is not
required to be implemented by itself and serves exclusively for error-analysis purposes.

The filter A is obtained by computing the difference between Jff and #. This filter takes
e.(k

the rounding errors e(k) := (
£y

)) as input and returns the result of their propagation through

the filter:

A (k+1) AA(E) + (1 o)e(k)

(7.15)

<3 TN I
¢ c

A(k) + (0 0)e(k>’
0 71

where, the vector (k) is guaranteed to be in the interval bounded by & := 2¢.
Once the decomposition is done, we can apply the WCPG theorem on the “error-filter” Az
and deduce the output interval of the computational errors propagated through filter:

Yk, |A(k)| < (Fr))-E. (7.16)
Hence, the output of the implemented filter is bounded with
)Co(k)| =|¢(k) + Ag(R)| < 1E(R)| + |A¢(R)|. (7.17)

Remark 7.1. Obviously, when applying the triangular inequality in (7.17) we actually overes-
timate the bound. From a practical point of view, it can be interpreted as an assumption that

111

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

the input signal that leads to the worst-case output also leads to the worst-case rounding
errors. Obviously, this is not generally true. Thus, the triangular inequality bound is not generally
attained. Consequently, the “least” MSB positions that we compute further are not the least
possible but the least for our way to model the errors and their propagation. In Section 7.8 we
propose an approach on dealing with this potential overestimation.

Applying Lemma 7.1 on the implemented filter and using (7.17) we obtain that the MSB

vector m? can be upper bounded by
m{ = [logy ()), + ()-8 ~logy (1-27) | (7.18)
Therefore, the FxP formats m?,¢°) guarantee that no overflows occur for the implemented

(SN
filter.

Since the input of the error filter # depends on the FxP formats chosen for implementation,
we cannot directly use (7.18). The idea is to first compute the FxP formats of the variables in the
exact filter ./, where computational errors are not taken into account, and use it as an initial
guess for implemented filter JQQ Hence, we obtain the following two-step algorithm:

Step 1: Determine the FxP formats (m, ¢;) for the exact filter A%

Step 2: Construct the “error-filter” #x, which gives the propagation of the computational errors
induced by format (m;, £;); then, compute the FxP formats (m?,(?) of the actually
implemented filter Jff using (7.18).

The above algorithm takes into account the filter implementation errors. However, the algorithm
itself is implemented in finite-precision and can suffer from rounding errors, which influence
the output result. All operations in the MSB computation will induce errors, so what we actually
compute are only floating-point approximations m; and ﬂz}o. In what follows, we propose an
error-analysis of the floating-point evaluation of the MSB positions via (7.7) and (7.18).

7.3 Error analysis of the MSB computation formula

Let us consider the case of 7, Y and show afterwards that 7z, is a special case. To reduce the
size of expressions, denote

m:=logy (7)) &), + ((Ha) -B);) ~ogy (1 - 2174). (7.19)

Handling floating-point analysis of multiplications and additions in (7.18) is straightforward
using approach by Higham [46]. The difficulty comes from the WCPG matrices which cannot be

112

7.3. ERROR ANALYSIS OF THE MSB COMPUTATION FORMULA

computed exactly. Both approximations ({7)} and ((#,)), even if computed with arbitrary

precision, bear some errors Ewcra, and &, that satisfy
0 < (CHp)) — (D) = €ycpg, - 1, (7.20)
0=({H)) = () = &ycra, - 1- (7.21)

Introducing the errors on the WCPG computations into the formula (7.18) we obtain that
what we actually compute is

q n+p
Ewera Z Uj~+ Eycpe Z €j
¢j=1 A j=1

mg 0 < |m+logy [1+ (7.22)

(<<ch;> @), + (A0 B);

The error term in (7.22) cannot be zero (apart from trivial case with zero @#). However,
since we can control the accuracy of the WCPG matrices, we can deduce conditions for the
approximation ﬁzzo to be off by at most one. Moreover, with the following Lemma we prove that
we never underestimate the MSB positions.

Lemma 7.2. If the WCPG matrices ({#;)) and ((#))) are computed such that (7.20) and
(7.21) hold with

1 V—ﬂ é)i (7.23)

&,
WCPG 5 2 Z‘]]):-l—ln Ei
1 (7)) -a)
Ewera, 9 7 = (7.24)
=1
where ((#)) := |D| + |CB| +|CAB|, then
0<m;-m; Y <1. (7.25)

Proof. Proof by construction, we reason as follows: since the error-term caused by the WCPG
floating-point evaluation is positive and the ceil function is increasing, then

mg 0 -m;, 0 =0, (7.26)

i.e. the floating-point approximation mg, Ois guaranteed to never be underestimated. However, it
can overestimate the MSB position by

q _ n+p_
&wepa, jzl Uj+Eycpg, 121 €
o 0 - —
g0 —my,O < |-] +logy | 1+ - : (7.27)
¢ ¢ [—‘ 2 (((Jf())u)iwL(((ffA))E)i
-1<-<0

113

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

The approximation ﬁzo overestimates at most by one bit if and only if the error term is contained
in the interval [0,1), i.e. if

n+p
EWCPG Z uj+ Ewcra, Zl €j

O=<logy |1+

(<<ch>> i), +(((Fn)) &); (7.28)

Hence, using the above condition we can deduce the required upper bounds on the &, and

& .
WCPG,

n+p
EWCPG Z u;+ Ewcra, Zl €j

1 .
(((ch» i), + (AN (7.29)

Since all the terms are positive, the left inequality is always true. The right inequality in (7.29) is
satisfied for instance if

q n+p
Ewera, J;- u; < 1 Ewcra, jgl £j < 1 7.30
((H))-m); 2 (AN - 8); 2 -
Rearranging terms we obtain following inequalities on the WCPG computation with error:
1 () a); 1 () B);
WCPG, < 9 ’ q—l Eycra, < 9 ’ TL (7.31)

) u; > Ej
J=1 J=1

Unfortunately, the above results cannot be used in practice, since they depend themselves
on the exact WCPG matrices. Instead, we may use a lower bound of the WCPG matrix, which
can be shown to be ((A)). We can compute this matrix exactly. Obviously,

(&) f) ((Hr)) - B);
Zp+n = = Zp+n =

(7.32)

and

(@a)z<(<<ﬁ0(>>a)l
Z;I-:lﬁi DI T

J

(7.33)

Hence, if the WCPG matrices in the right sides of (7.31) are substituted with their lower
bounds, the condition (7.29) stays satisfied and we obtain bounds (7.23) and (7.24).
|

Analogously, Lemma 7.2 can be applied to the computation of m;, with the terms concerning
filter A set to zero.

114

7.4. COMPLETE ALGORITHM

Algorithm 111.3: Reliable determination of the Fixed-Point formats
Input: system 4 =(A,B,C,D);
input interval bound ;
wordlength constraints w,,w,
Output: Formats (m,,m,) or an error

Wy
1 W — w
Y

2 ch—(A’B’(é)’(g))

I\ (I\ (0 O
i —(afo)c) o 1)
fori=0,...,n+p do
[m;,]— interval([logy (((#)) &), —logy (1—217%4)])
Mpyax, — my, +wg, +1
nd
do

© ® N o o A
(]

fori=0,...,n+pdo
E(i <_2m(i—w(i+1

" ["‘2] — interval ([logy ((((#)) - &); + ((Fr)) -©);) —logy (1 - 2")])

12 end

138 | if [m{1==[mg,] fori=0,...,n+p then
14 | return mg

15 end

16 else

17 | [mg]—Img]l+1fori=0,...,n+p
18 end

19 While 72 < Mmax;

20 return Error

7.4 Complete algorithm

The two-step algorithm, presented in subsection 7.2 takes into account accumulation of compu-
tational errors in a filter over time and Lemma 7.2 presents error-analysis of the MSB position
computation procedure. However, one additional fact has not been taken into account.

In most cases the MSB vectors m; (computed on Step 1) and ﬁz? (computed on Step 2)
are the same. However, in some cases they are not, which can happen due to one of the
following reasons:

» the accumulated rounding error due to the FxP formats (ﬂl(,i() makes the output of the

115

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

actually implemented filter pass over to the next binade; or

+ the floating-point approximation ﬂz? is off by one.

Moreover, we remind the reader that we consider that wordlength constraints are hard, i.e.
they cannot be changed. Then, if the MSB position after Step 2 of the algorithm is increased,
the LSB position moves along and increases the error. Therefore, the modified format must be
re-checked to verify whether the increased error had not propagated in such way that the MSB
positions must be increased even more. Hence, the FxP formats determination algorithm gets

transformed into the following iterative procedure that goes through three steps:

Step 1: Determine the FxP formats (rﬁg,?() for the exact filter #4%;

Step 2: Construct the “error-filter” #A which describes the propagation of the computational
errors induced by format (iﬁg,?;); then, compute the FxP formats (r?z?,??) of the
actually implemented filter 70

Step 3: If the formats r?z? computed on Step 2 are the same as formats computed on Step 1,

i.e. ﬁz? ==my,, then we return the formats (m?,??). Otherwise, we increase m;, by
one and repeat the process from Step 2.

Obviously, if the given wordlengths are too small and the filter simply cannot be reliably
implemented with those constraints, our procedure enters an infinite loop. A practical stop
condition is to let the LSB position to move up until the initial guess of the MSB position. Moving
the LSB position further is meaningless since it means that the quantization error is larger in
magnitude than the output of the exact filter.

The final procedure is described with the Algorithm 111.3, where operator interval implies
that all internal computations are done with interval arithmetic and vector m,,x denotes the
maximum bound on the MSBs of the implemented filter. In this algorithm we compute the WCPG
matrices with the error bounds deduced with Lemma 7.2.

7.5 Numerical results

The above described algorithm was implemented as a C library, using GNU MPFR version
3.1.12, GNU MPFI version 1.5.1 and the WCPG library [7]. Experiments were done on a laptop
computer with an Intel Core i5 processor running at 2.8 GHz and 16 GB of RAM. Consider two
examples, one being our key lowpass filter and second being a real-life filter from Software
Defined Radio applications.

116

7.5. NUMERICAL RESULTS

wordlengths wordlengths

(a) Example 1: simple lowpass filter (b) Example 2: real-life filter

Figure 7.2: Evolution of the worst-case error in dependency with the wordlength constraints.

Example 1: Consider our key filter example from Chapter 1 Section 1.4.3 and suppose that
all inputs are situated in an interval bounded by & = 1. We realized this transfer function with
a balanced state-space structure'. We applied our algorithm to determine the FxP formats
for an implementation with wordlengths (for state and output variables) decreasing from 16
to 4 bits. We obtain that implementation is possible only for wordlengths larger than 5 bits.
For the worldengths set to 5 our algorithm determined that the computational errors with such
wordlengths will yield an overflow. In other words, in Algorithm II1.3, we tried to move the MSB
positions in additional steps up until the condition on line 19 was satisfied. Interestingly, for
implementation with wordlengths from 16 to 6 bits no additional steps were required, i.e. the
initial guess formats were always enough.

Via the error filter /5 we determine the bound on the implementation error for state and
output variables of our filter. In Figure 7.2a we illustrate the evolution of the worst-case error of
the output y(%) in dependency with the wordlength constraints.

Example 2: This example comes from a recent article [139] on the implementation of Software
Defined Radio on reconfigurable architectures. The filter in question is a SISO bandpass filter
with a very narrow passband. We realize this filter again with a balanced state-space structure?
An interested reader may find the coefficients of the structure in Appendix 3.2.

We applied our algorithm to determine the FxP formats for an implementation with wordlengths
(for state and output variables) decreasing from 16 to 4 bits. Our algorithm indicates that a
reliable implementation is possible only up to 11 bits of wordlength for each state and output.

TCoefficients of the state-space were obtained using the standard Python SciPy function ss.
2The structure choice is based only on its possibility to highlight certain features of the algorithm.

117

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

16 bits 12 bits
Step1 Step 2 Step1 Step2 Additional Step 1 Additional Step 2
X1 5 5 5 5 5 5
X9 5 5 5 5 5 5
x3 4 4 4 5 5 5
x4 4 4 4 5 5 5
X5 3 3 3 3 4 4
X 3 3 3 3 4 4
y 1 1 1 1 2 2
time 1.35s 3.06s

Table 7.1: Evolution of MSB positions through the algorithm

Decreasing wordlengths to 10 bits and less yields computational errors that may lead to an
overflow and there exist no FxP formats that are guaranteed to avoid that.

In contrast to Example 1, our algorithm required several additional steps, i.e. came back
to Step 2 several times, for some wordlength constraints. Table 7.1 illustrates the evolution of
MSB positions through our algorithm for the wordlength constraints set to 16 and 12 bits. We
see that for the wordlength constraints set to 16 bits the MSB positions computed on Step 2 are
the same is the initially guessed MSBs, and hence our algorithm stops. For the wordlengths
set to 12 bits, the MSBs of x3 and x4 are increased on Step 2. We check whether increasing
the quantization error may yield to an overflow and obtain that MSBs for x5,x6 and y must be
increased. After performing one more check we obtain that these formats are indeed reliable.

Analogously to Example 1, we may determine the bound on the implementation error. On
Figure 7.2b we illustrate the evolution of a bound on the worst-case error Ay of the output in
dependency with the wordlengths constraints.

7.6 Application to the Specialized Implicit Form

The above approach can easily be extended to the case of filter realizations described with the
Specialized Implicit Form (SIF).
LetZ={J,K,L, M ,N,P,Q,R,S} be some realization of a MIMO filter described with SIF.
tk+1)
Analogously to (7.9), we denote by §(%):=| x(k) | a vector holding the temporary, state

y(k)
and output variables. Then, the corresponding SIF Z; is described with the following set of

118

7.6. APPLICATION TO THE SPECIALIZED IMPLICIT FORM

equations:
tk+1) = -JHk+1) + Mx(k) + Nul(k)
xk+1) = Ktkk+1) + Px(k) + Qu(k)
Ry I ()} ()}) (7.34)
Ck) = |O|tk+1) + |I|xtR) + |O]|uk)
L R S

where JJ' = J —I. Then, using the same considerations over the rounding operator as in
Section 7.2, the actually implemented filter can be modeled as 92? described with the following
set of equations:

tOk+1) = -Jt%+1) + Mx2F) + Nuk) + (1 0 0|ek)
L%+ = KR+ + PxOGR) + Quk) + (o I 0|ek)
R i 0 0 00 0 (7.35)
Ok = |0k +1) + |T|x%(R) + |0|utk) + |0 0 Ofek)
L R S 0 0 I
g(k+1)
where €(k):=| &,(k) | holds the errors due to rounding while computing to,x<> and y<>.
£y(k)

Analogously to (7.15), the error-filter A%, is obtained by computing the difference between
%? and %, and has coefficient matrices

1 0) (0 0 o
A% :={ JK,|0|.M,(T 0 o),P,(0 I o),[I|.[o 0 0 (7.36)
L R)lo o1

As it was mentioned in the state of the art, Chapter 3 Section 3.2.1, we can convert any SIF
to a state-space model without any computational errors. Thus, we can compute the WCPG
«R)) of a system £ in SIF representation by first converting £ into a corresponding state-space
system and then applying the WCPG algorithm. Hence, we need to make the following changes
in the Algorithm 111.3 to adapt to the case of systems in SIF representation:

* instead of A, we use % as in (7.34);
* instead of /£ we use Zx as in (7.36);

+ WCPGs of systems in the SIF representation are computed through conversion to the
exact conversion from SIF to state-space;

* vectors m; and m? bear the MSB positions of the temporary, state and output variables
for the initial and implemented filter respectively.

119

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

7.7 Conclusion

In this Chapter we proposed an algorithm for the reliable determination of the FxP formats for all
variables involved in a recursive filter. We assume that the wordlength constraints and a bound
on the input interval® are given. We take computational errors as well as their propagation over
time fully into account. We achieve this by decomposing the actually implemented filter into a
sum of the exact filter and a special error-filter. By applying the WCPG theorem upon the error
filter we get a bound on the worst-case error. We take this bound into account while computing
the MSB positions for the variables.

We provide error analysis of the MSB computation formula and show that by adjusting
the accuracy of the WCPGs, the computed MSB positions are either exact or overestimated
by one. Our approach is fully reliable and we do not use any simulations anywhere in our
algorithms. Even despite the off-by-one problem, to our knowledge, our algorithm is the first
existing approach that given wordlength constraints provides reliable MSB positions along with
a rigorous bound on the computational errors. Moreover, it is easy to turn the problem the “other
way around” and, given some output error bound, determine the least MSB positions that ensure
this bound. We also support multiple wordlength paradigm, i.e. wordlengths are not necessarily
the same for all variables.

By extending this approach to the case of SIF, we enable reliable FxP implementation of any
LTI digital filter structure. This contribution represents the kernel functionality of our automatic
filter code generator.

Remark that in this work we derived our algorithms only for the case of errors only due to
rounding in intermediate computations. As it was mentioned before, another source of error is
the quantization of the coefficients. Obviously, both computational and quantization errors must
be treated together. In his thesis [6], Lopez modified the decomposition of an implemented filter
such that the error filter /£ also takes into account the propagation of the quantization errors.
Using this updated error-filter, we simply apply the Algorthm II.3 upon it and obtain the general
approach for reliable FxP implementation of digital filters.

The execution time of our algorithm is dominated by the computation of the WCPG. In most
cases, we do not require large accuracy for the WCPG. On the contrary, we often need the
WCPG to be accurate to even less than double precision which speeds up the computations.
Overall, the execution time of our algorithm permits us to use it repetitively, for instance as part
of optimization routines. For example, for hardware targets that support multiple wordlength
paradigm, we usually seek to minimize the wordlengths while maintaining certain quality of the
output. Or, we may seek to minimize the power consumption of the eventual architecture. To

3The interval is supposed to be centered at zero.

120

7.8. ONGOING WORK: OFF-BY-ONE PROBLEM

fm] . rnﬂ+l‘

Figure 7.3: Performing Ziv’s iteration.

prove the optimality of the computed solutions, we must ensure that we always compute the
least MSB positions.

In other words, we need to solve the off-by-one problem of our algorithm. In Section 7.8 we
present a possible approach on tackling this problem. We showed that by solving a particular
Integer Linear Programming (ILP) problem we may prove that it is safe to take the smaller MSB
positions. The condition for that is the absence of solutions of the ILP problem. However, if
there exists a solution, we still do not have a guarantee that there indeed exists an input signal
that forces our FxP algorithm to fail (e.g. overflow occurs). There is still some work required to
investigate this question.

Finally, it is interesting to investigate the case when some information is available concerning
the spectrum of the input signal. This information may considerably reduce the dynamic range
of the filter and, consequently, the implementation cost. Our goal is to propose an approach
on exploiting this information on the behavior of the input signal while still guaranteeing the
reliability of the computed FxP Formats. In the Section 7.9 we give the problem statement and
our approach on tackling this problem.

7.8 Ongoing work: Off-by-One Problem

In Section 7.3 we showed that since the computation of MSB positions is based on the WCPG
measure, which itself cannot be computed exactly, we compute the MSB positions with some
error. In Lemma 7.2 we give the minimum accuracy of the WCPG matrices such that the MSB
positions are overestimated at most by one. However, the computation of the MSB is based
on the quantities (the WCPG and logarithm) that cannot be computed exactly in finite number
of steps but only approximately. We deal with the error of computation of logarithm by using
multiple precision interval arithmetic but then the problem is to determine what accuracy of the
WCPG to choose.

Let [fii] be an interval estimation of a MSB position via (7.19), where the WCPG matrices
were computed with the error bounds deduced in Lemma 7.2. The integer MSB positions are
computed as [[I/’r\l]—‘ . However, we may be in trouble if the exact value m is very close to the integer

[mw, since in this case the interval with an approximated MSB position will contain both [m} and

121

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

[m} + 1. Then, we need to determine the smallest accuracy of the WCPG such that we do not
overestimate the MSB position, i.e. the upper bound of interval [[1?1]1 with an approximation of

MSB is the same as [m] This problem is an instance of the Table Maker’s Dilemma (TMD) [35],
which occurs during the implementation of correctly rounded transcendental functions.

One of the strategies of solving the TMD is performing Ziv’s iteration [140]. In this approach
we reduce the width of the interval [fi] by iteratively increasing the accuracy of the WCPG
computation. However, even after numerous iterations the interval may still contain the integer

[m} (see Figure 7.3). This may be due to the following reasons:
(i) the interval is still too large due to the rounding errors;
(i) the interval is too large due to the triangular inequality in (7.17);
(ii) the propagation of the rounding errors indeed yields the larger MSB position, i.e. m> z .

Thus, we cannot simply continue increasing the precision of the computations. We propose the
following strategy:

* increase the accuracy of the WCPG several times;

- if the interval [in] still contains the integer z, try to find whether there exist a state and input
vector that yield an overflow if the eventual MSB position is set to z. Roughly said, we try
to use the smaller format and prove that an overflow is not possible.

To prove that an overflow (underflow) is not possible, we propose to solve an instance of the
following Integer Linear Programming [141-143] problem.

7.8.1 Optimization problem

Let the input signal u be represented in some FxP Format. Suppose that we determine the FxP
Formats for the state and output variables and, in case of the Off-by-one problem, we choose
the smaller MSB positions. Let x, y, u be the minimal and x, y, w the maximum authorized
values for the state, output and input vectors respectively.

) that are in the deduced FxP formats but for which

e)£

122

X
Then, our goal is to find (
u

7.8. ONGOING WORK: OFF-BY-ONE PROBLEM

o
with (x) = 0. In other words, we are looking for x,y,6,8, such that

Oy
A B)\|x x| [0x
<[*]+ (7.38)
C D)\u y Oy
A B\(x x| [0
>|7 |+ (7.39)
C D|\u y Oy
I 0 x
<* (7.40)
0 I)\u u
I 0
1= (7.41)
0 I)\u u

Denote x :=x+«’ and u := u + u'. To formalize the optimization problem, we need to bring the
above inequalities to the canonical form, i.e. bring all inequalities to the direction “<”.
Then, the optimization problem is the following:

maximize ¢ ' & (7.42)
subject to the following constraints:
Fé<r (7.43)
where
x 0
e=|% |50, ¢=|° (7.44)
lel” 7 T | '
Oy 1
and
A B -1 0 x| [A B)(x
¢C D 0 -I y C DJ\y
-A -B I 0 A B\[x| (x
F= , r= 112111 (7.45)
-C -D 0 1 C D|\y y
I o o0 o xX—x
0 I 0 O u-u

For a proof of equivalence, see Appendix 4.

123

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

Suppose the coefficient matrices A,B,C,D are representable in some FxP format. Then, if
we scale the constraints f and r, then it may be shown that the above optimization problem
becomes an Integer Linear Programming problem.

Remark 7.2. Here we considered only the case of overflow. For the case of underflow we need

¢ ol

A
with (x) = 0. Obviously, we can proceed analogously.

look for x,y,Ax, Ay such that

(7.46)

Ay

y

To ensure that we find the exact solution, we propose to use a solver over rational numbers.
Such solver is available in GNU Linear Programming Kit*:® or in SCIP Optimization Suite® [144—
146].

If there does not exist any solution of the above problem, then the overestimation of the
MSB position was due to the application of triangular inequality in (7.17) (see Remark 7.1) and
it is safe to take the smaller MSB positions.

However, even if a solution exists, it does not necessarily mean that there is actual overflow:

X
the state vector x in the solution (
u

with the given FxP formats. For continuous-time dynamic problems, the reachability of a given

) may be not reachable for the dynamic system implemented

state x is easily verified and there exist some results for the discrete-time models [147-149].
However, these results are not applicable in our case since all the computations are performed
with some FxP formats and the set of reachable states is actually an integer “grid”. Possible
approach consists in representation of inputs, states and outputs as vectors in euclidean integer
lattices [150] defined by the FxP formats and then “unrolling” the solution of the optimization
problem to the initial state of the system (i.e. zero state). This might be feasible using some SMT
solver [151].

Interestingly, after conducting tests over numerous artificial and real-life filters, we have not
found an example for which the optimization problem would find the solution. Obviously, our
tests are far from being exhaustive, hence we cannot make any conclusion over the results.
To conclude, we have proposed an algorithm of verification whether using a smaller MSB
position in the case of Off-by-one problem may yield to an overflow (underflow). Still, in case of

4h'c‘cps ://www.gnu.org/software/glpk/
5The exact solver is based on the GMP rational numbers. It is available as an unofficial patch.
bhttp://scip.zib.de/

124

https://www.gnu.org/software/glpk/
http://scip.zib.de/

7.9. ONGOING WORK: TAKING INTO ACCOUNT THE SPECTRUM OF THE INPUT SIGNAL

Amplitude ‘r
Ay
Ay
2 : . Normalized
w1 ™ Frequency

Figure 7.4: Example of input signal specifications

positive answer some work must be done to prove that the computed solution is reachable for
the dynamic system or not. While being interesting from the theoretical point of view, in practical
applications this problem would be often neglected and 1 bit larger MSB formats would be taken.

7.9 Ongoing work: Taking into account the spectrum of the input
signal

When we determine the FxP formats for the reliable implementation of digital filters, we rely on
the dynamic range determined via the WCPG measure. This approach is completely rigorous
and one can always construct a finite input signal that yields an output arbitrarily close to the
bound determined with the WCPG. This input sequence is composed of the supremum of the
possible inputs multiplied by the sign of the impulse response shifted in time. In most of the
applications this input sequence is highly unlikely to be met though still must be considered
to guarantee the reliability of the implementation. However, it may be possible to take into
account some information on the behavior of the input signal while still guaranteeing the rigorous
evaluation of the dynamic range. In this section we present some ideas on that account.

Often a digital filter's input signal is the output of an existing signal processing system,
or describes particular physical process dynamics of which can be expressed as frequency
(spectrum) specifications. For example, an input signal that describes temperature usually lies
in low frequencies (assuming high enough sampling rate), with higher frequencies dedicated to
possible measurement noise.

Generally, specifications of the input signal consist of multiple bands. We will model the
frequency specification by a function G of the normalized frequency w bounding the Discrete-
Time Fourier Transform U(e/®) of the input signal:

U(e)| <Gw), Ywelo,nl. (7.47)

125

CHAPTER 7. DETERMINING RELIABLE FIXED-POINT FORMATS

Let G(w) be the frequency specification for an input signal. Then the considered filter A to
implement is given on Figure 7.5.

i
—» H —
U Y

Figure 7.5: Filter that we need to implement.

The idea is to model the initial filter as a cascade of two filters: (1) a system ¢ that produces
an output with frequency response G(w); (2) the initial filter. While the first filter is not going to
be actually implemented, it permits to take into account the dynamics of the initial input signal
when the WCPG theorem is applied upon the cascaded system.

We propose to proceed in following steps:

Step 1: Only an ideal filter can be modeled from the input signal specification. To remove
that constraint, we use classical filter design tools (based on Parks-McClellan approxima-
tion [152] for example) to find a filter ¢* that has a frequency response G *(w) greater than G(w),
for example between G(w) and G(w) enlarged by some margin A, as shown on Figure 7.6, i.e:

G(w) < |G* () <G(w)+A, Ywel0,x]. (7.48)

Step 2: However, the available tools (Matlab, Scipy, etc.) propose some filter ¢* with no
reliable guarantee that ¢¢* is between ¢ and ¢ + A for all w, due to their internal finite-precision
errors. Even though the error is relatively small, this is not sufficient for a reliable magnitude
upper-bound. For that purpose, we are going to propose in the next Chapter a reliable method to
verify that ¢* satisfies (7.48). If verification does not pass, our algorithm gives an indication by
how much ¥¢* violates its constraints and we can increase A and perform again the verification
of Step 2.

Step 3: Then, cascade the filters ¢* and .# into a filter . We obtain the system that
is illustrated on Figure 7.7. The WCPG applied on ¢* gives a reliable upper-bound for the
magnitude of the output.

Step 4: Finally, apply the rigorous fixed-point format determination algorithm from this Chap-
ter upon &, slightly modified to account for the fact that ¢* will not be part of the implemented
filter, and thus no errors will propagate through it.

126

7.9. ONGOING WORK: TAKING INTO ACCOUNT THE SPECTRUM OF THE INPUT SIGNAL

Amplitude ‘r
Ay
Ay L A
. _ Normalized
w1 ™ Frequency

Figure 7.6: Filter ¢* respects G(w) enlarged by A.

T L s

g "

A4 U Y

Figure 7.7: Cascaded system &.

With our algorithm from this Chapter we guarantee that for the filter & the determined MSB
positions may be overestimated at most by one. However, for the initial filter A formats may
potentially be overestimated by a larger amount. This is due to the overestimation of the input
signal frequency response by A (see Figure 7.6), which is required to guarantee an upper bound
on the MSBs. However, we can reduce this by making A arbitrarily small using high-degree
rational Remez approximation, or a Finite Impulse Response Filter for ¢* [153].

The implementation of the algorithm being in the development stage, no numerical examples
are available. However, we believe that the approach proposed above may significantly decrease
the memory requirements for the implemented system while guaranteeing its reliability An
abstract describing this approach has been accepted at the 51st Asilomar Conference on
Signals, Systems and Computers.

127

CHAPTER

RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST
ITS FREQUENCY SPECIFICATION

n the previous Chapters we considered only errors in the time domain. We showed how

to bound the errors due to the finite-precision computations and quantization. Obviously,

we want the implemented filter’s output not to be far from the ideal output. However, at the
end of the day, we are rather interested in the frequency-domain behavior of the implemented
filter, i.e. behavior of its frequency response. People should not think that having a small output
error in the time domain necessarily implies a small error in the frequency domain. Thus, for a
rigorous implementation of linear filters we must verify whether the implemented filter respects
the desired frequency constraints.

In this Chapter we give an approach on the verification of an arbitrary Single Input Single
Output linear filter algorithm against given frequency specifications. We first derive an algorithm
for the verification of an exact transfer function. This verification boils down to the check of a
positivity of a real polynomial on some domain. We use a combination of interval and rational
arithmetic in the Sollya [54] tool to provide this rigorous verification. Then, using our transfer
function computation algorithm from Chapter 5 and the WCPG, we show how to extend this
verification to the transfer function of any filter structure. We provide several use-cases of our
algorithm: as a verification tool of an existing design, as a criterion during the choice of the
realization and as a tool for the verification of transfer function design methods.

With this approach we provide an easy method to tie the errors due to the coefficient
quantization in the time domain with the errors in the frequency domain. Obviously, the finite-
precision implementation also influences the frequency response of the filter and the impact of
finite-precision computations should be taken into account during filter verification. We give an
idea how it can be done with respect ot the spectral behavior of the filter's output.

This work is based on the article [9] published at the IEEE Symposium on Computer
Arithmetic (ARITH) in 2017.

129

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

20

--- initial TF
—— quantized TF |

o

|
)
(e}
T

|
B
o
T

Magnitude response, dB
| |
® o
S 3
T T

—100

—120 |-

|
9.6 12 24
Frequency, kHz

—140
0

Figure 8.1: Difference between the magnitude responses of the initial and quantized transfer
functions.

8.1 Problem statement

Let us start with an example that illustrates that a small error in the time domain does not
necessarily implies a small error in the frequency domain.

Example 8.1. Consider again our key filter example along with the corresponding transfer
function from Chapter 1 Section 1.4.3. Suppose that the coefficients of this transfer functions
are quantized to 16 bits and we let the difference between the initial and quantized functions be
AA . Computing the WCPG corresponding to the AA€, we obtain that the quantization errors
are bounded by 1.92-107%. However, we see from Figure 8.1 that the difference between the
magnitude responses of the initial and quantized transfer functions is much larger than the
time-domain error.

Thus, we always must ensure that a filter implementation really does satisfy the desired
frequency specifications. Formally, band specifications can be described as

i |H(ej‘”)| <B, Voelw,ws)<[0,27]. (8.1)

130

8.2. VERIFYING BOUNDS ON A TRANSFER FUNCTION

The lower bound g is equal to 0 for stopbands. Due to Nyquist-Shannon theorem [18], it is only
necessary to consider the frequencies in the interval [0, 7].
For instance, our key filter specifications can be written as

{ 0<|H(/®)|< 1, VYwe[0,0.47] (passband) @2)

|H(e/®)| < -80, VYwel0.57,7] (stopband).

For the sake of generality, we will further describe specifications with a set of inequalities as
in (8.1). This way of specifying filters is not the only one: instead of constant bounds $ and $,
one might consider upper and lower bounds be given as polynomials varying in the nor_malized
frequency' or even measures allowing spectral densities and partial violations of bounds to be
taken into account. Considering these alternative ways of filter specifications shall be left to
future work.

Then, the verification problem can be stated as follows:

—— Problem]

Given an LTI filter implementation (e.g. data-flow graph) and frequency specifications where

constraints on each band are given in the form (8.1), verify whether the implemented filter’s
transfer function respects the bounds for any frequency. We shall consider all frequency
specification bounds as hard constraints. Our algorithm must return — in the first place —
a boolean answer whether the specification is satisfied or not. The algorithm must ensure
reliable verification, i.e. that no false positive answers are returned.

We tackle the problem by first verifying bounds on a transfer function. Then we use SIF as a
unifying framework to encapsulate any digital filter and show how to apply the verification of a
transfer function upon any SIF.

8.2 Verifying bounds on a transfer function

The purpose of this Section is to detail our method that verifies that the modulus of a transfer
function H stays between two bounds B and f for all z taken on a segment of the unit circle,
corresponding to a certain frequency ba_nd, i.e. z=e/® for all w € Q < [0,27]. In the case when
the given bounds cannot be verified, our intention is to compute approximations to problematic
frequencies for which the bounds are violated.

We proceed in three steps. In Section 8.2.1, we show how we can reduce the given problem
to showing that a rational function with real coefficients stays between two bounds for real
arguments taken in a subset of [0, 1]. In Section 8.2.2, we then further reduce the problem to

"Normalized frequency is a unit of measurement of frequency equivalent to cycles/sample. See Chapter 1
Section 1.4.1

131

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

showing that a polynomial stays non-negative over a subset of [0, 1]. In Section 8.2.3, we briefly
describe our approach to computing problematic frequencies in the case when the verification
does not succeed.

8.2.1 Reducing the problem to a real rational function

We wish to verify that B= |H(z)| < B for all z =/ with w € Q = [0,27]. We suppose that H is

b(z)

given as a rational function H(z) = with real coefficients. Since we can suppose without lack

of generality that § = 0, this is equwalent to showing that
PP <IH@E<PF, Vz=e 0weQ. (8.3)

Since z = e/* and the numerator and denominator polynomials a and b have real coefficients,
conjugation of z yields z* = 1/z and conjugation of the polynomials has no effect. So we have

b(2)b*(z*)
H()? =~
a(z)a*(z*)
_ b(2)b(1/2)
T alz)a(l/z)
v(2)
=— 8.4
0 2)’ (8.4)
where v and w also are polynomials with real coefficients, obtained by simplifying the fraction
b(z2)b(1/z)
a(z)a(l/z)"
We have hence reduced the problem to verifying that
B2 < v(z) Bz Vz=e/ weQ. (8.5)
E = we@
Taking now ¢ = tan §, we can write z = e/® as
: 1-¢2 2t
z:ejw:cosaH—jsinw:m-#jm. (8.6)
By formally composing v and w with the expression z = ijrg +J 1322, for example by formal

evaluation with Horner’'s scheme, and clearing numerators and denominators, we can hence
obtain four polynomials r, s, 4, b, all with real coefficients, such that

2.
\H(2)2 = v(z) v(% +j %) a0

S wk) (Liz i) T s() + ()

(8.7)

r@)
s(8)

We may therefore drop a and b. We have now reduced the problem

We can now observe that |H(z)|? is a real number and that the ratio
r(t)+jat)
s@)+70(t)"

is hence equal to
the complex ratio

to verifying that

ﬁ Vtztang,wEQQ[O,Zn], (8.8)

‘

pr<’

(

_/

[VA)

132

8.2. VERIFYING BOUNDS ON A TRANSFER FUNCTION

where the both polynomials and s have real coefficients and all other quantities, ﬁ2,32,w and
t are all real numbers. We must hence no longer deal with complex ratios and comp_lex numbers
and have reduced the problem to verifying the bounds of a real rational function over an interval,
subset of the reals.

Unfortunately, the mapping ¢ = tan% maps the possible frequencies w € Q < [0,2x] onto
to the whole real axis. In our experiments, we found this difficult to handle, partly because the
tool we used, Sollya, has very little support for unbounded intervals and partly because having
unbounded intervals meant searching for the zeros of certain functions over such unbounded
intervals, which we found numerically unstable (see Section 8.2.3 for more details). We hence
apply a second mapping: ¢ = 6(1_ Still by formally composing the polynomials r and s with the

expression ¢ = ;(f‘;), we obtain two polynomials p and g with real coefficients such that

r@@) _ p)

H =)
H()P = s(t) q(®

(8.9)

©
-

order to do so, we extended the tool we used, Sollya, with an algorithm to compute the gcd of

In the same step, we reduce the resulting rational function to its least terms to obtain £%

two polynomials [154].

t+2— \/t +4

As the inverse mapping ¢ = maps the reals onto the interval [0, 1], we have hence

reduced our problem to verifying that

ik 5—2:532, VEeEC[0,1]. (8.10)

8.2.2 Verifying the bounds of a rational function by showing the non-negativity
of a polynomial

In order to verify an instance of (8.10), we can suppose that the interval = the arguments & vary
o : —2 . . .

in is not reduced to a point and that 82 # B (otherwise a simple evaluation or a check whether
p and q are constant polynomials suffice). We can hence reduce the problem further to obtain:

2p(&) - (32 +B2) q©
—-1< — <1, Viekx. (811)
(F - e

Let
2©=2p@)~ B+ %) a©
and

&= (B -2 a(©.

133

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

It hence sulffices to verify that

2(&)? -
=1, VéeE 8.12
hE2 ¢ (8.12)
which is equivalent to showing that
&P -g@)? =0, VEEE. (8.13)

Let £(&) = h(&)? — g(¢)2. Again f is a polynomial with real coefficients. We have reduced our
problem to showing that the value of this polynomial f(¢) stays non-negative over all £ € Z < [0,1],
where the interval E is easily obtained from the original frequency domain Q = [w1, w2].

Our approach to showing that f stays non-negative over = is similar to the one set out
in [49]. We typically perform the following checks:

(i) Check whether f is positive at some (arbitrarily chosen) point {1 € Z by (interval arithmetic)
evaluation of f at {; and that f has no zero over the whole interval Z. If so, f is non-
negative over the whole interval =.

(i) Check whether f is positive at both endpoints of the interval = by (interval) evaluation
at these endpoints and that it has exactly one zero over whole interval =, not counting
multiplicities. The zero it has in the interval hence is of even multiplicity and the polynomial
stays non-negative over the whole interval.

(iii) Check whether the interval = can be split into subintervals such that one of the two
aforementioned checks become satisfied.

We test whether a polynomial (with real coefficients) has no, one or more zeros over an
interval, bounded subset of the reals, utilizing Sturm’s theorems on the Sturm sequence of the
polynomial, similarly as done in [49]. Sturm’s theorem yields the number of real zeros of a real
polynomial over a bounded interval, not counting multiplicities [155]. The tool we used, Sollya,
includes a fast but rigorous implementation of Sturm’s technique [54].

8.2.3 Numerically computing problematic frequencies

In the case when our checks verifying if a given transfer function H(z) stays bounded in modulus
by the two bounds ﬁ and E does not succeed, we numerically compute a list of problematic
frequencies @; at which one of the bounds is violated. In contrast to the verification step which is
completely rigorous in the sense that will never return a positive answer (i.e. the transfer function
satisfies the given bounds while the function actually does not), this numerical step is not fully
rigorous. It may miss certain frequencies at which the bounds are violated. It is nevertheless
pretty efficient with respect to speeding up the complete LTl filter verification algorithm we set

134

8.3. VERIFYING BOUNDS FOR ANY LTI REALIZATION

|H(€jw)‘ A
B ¢ \ //:\\
é NN L
[[Il Il
1] [1 [] -
~ ~ ~ ~ w
w1 wo w3 Wyq

Figure 8.2: If needed our algorithm returns the problematic frequencies as small intervals.

out in Section 8.3, in particular concerning determining a reasonable verification margin (see
below).

In our approach, we couple the verification process, described in Sections 8.2.1 and 8.2.2,
with the possibly needed step of computing problematic frequencies. These frequencies actually
correspond, through the different mappings w — ¢ — &, to points ¢ at which the polynomial
eventually obtained, f, takes negative values. We determine these points as the (negative)
extremum points of . We therefore differentiate f and compute approximations to the zeros
of ' by root isolation (still using Sturm’s technique) and refinement with Newton-Raphson
iterations. The tool we used, Sollya, offers all necessary basic bricks for these computations [54].
Once we obtain a list of points ; at which f becomes negative, we remap these values &; to a
list of problematic frequencies, by following the inverse mappings ¢ — ¢t — w.

8.3 Verifying bounds for any LTI realization

Once we provided the algorithm for the verification of transfer functions, we may encompass
verification of any implemented filter using SIF. We have proposed in Chapter 5 Section 5.2.1 an
algorithm for the computation of transfer function corresponding to an arbitrary SIF. Given
a SIF realization and an error bound &, we can compute an approximation H such that
|H(e/?) - H(e/?)| < & for all frequencies w. This algorithm is based on the following idea:
we compute the difference between the initial filter realization and a realization that exactly
corresponds to the approximated transfer function. Then, we can compute a bound on any
output of this “error-filter” using the WCPG which also provides a bound on the filter's magnitude
response.

Hence, to verify whether the magnitude response of the implemented filter is in the interval
[B; B, it is sufficient that the approximation |H(e/®)| for w € Q is in the interval [8+; - 8]. See
F_igure 8.3 for an illustration. -

135

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

|[H ()]

[H ()],

™I

™I
|
(%)
| >
Ey

(b)

Figure 8.4: If verification fails (i), we enlarge the bound (ii).

If the verification is not successful, we use a heuristic to compute a verification margin,

such that after adding it to the bounds our algorithm gives a positive answer. First, we obtain
a list of problematic frequencies with the algorithm from Section 8.2. Thus, we can compute
the maximum excess of the bounds, enlarge the band by this amount and repeat the process.
However, we do not know for sure whether this excess is because ¢ is too large or the magnitude
response indeed does not pass the verification.
For example, on Figure 8.4a we do not know whether the approximation |FI(ej“’)| is too close to
the bound or § is too large. In this case, we enlarge the band margin up to some new bound
F and at the same time decrease 6, and perform the verification again with the updated band.
This algorithm may yield a false negative answer if the initial accuracy of the transfer function
computation was not large enough, which we never observed on the numerical examples we ran
the algorithm on. Algorithm I11.4 details our heuristic for the verification. It makes use of several
basic brick algorithms:

+ computeTF(Z,¢) is the Algorithm I1.5 which computes the transfer function corresponding
to the SIF %; the result approximation is guaranteed to have an approximation error

136

8.3. VERIFYING BOUNDS FOR ANY LTI REALIZATION

bounded by ¢.

» checkTF(g,H,m) is an algorithm for the verification of a transfer function against fre-
quency specifications g enlarged (or reduced, if m < 0) by the margin m € R, see Sec-
tion 8.2 for more detailed description. This algorithm returns a boolean answer.

+ findMinimumMargin(g,H,m) is an algorithm that, given a transfer function H that does
not satisfy frequency specifications g, iteratively deduces the maximum excess of H out
of the bands in g,then enlarges bands by this amount and repeats until the verification of
H against specifications g is not successful.

The constants INIT_ERROR, LEAST_ERROR and ERROR_FACTOR denote the initial
error bound on the transfer function, the smallest error with which we are ready to compute the
approximation on the transfer function and the factor by which we decrease the error bound
each iteration respectively.

Algorithm 1lI1.4: Verification of a realization against frequency specifications
Input: Z# - SIF describing filter realization
g - set of frequency specificaions
Output: (boolean, margin) - result of verification and verification margin
0 — INIT_ERROR
H — computeTF(Z,0)
margin «— findMinimumMargin(g,H,0)
while § > INIT_ERROR do
vefificationMargin «—margin -6
result — checkTF(g,H, verificationMargin)
if result is True then
return (True, verificationMargin)
end
margin — max{margin + 4, f indMinimumMargin(g, H,verificationMargin)}
6 — ERROR_FACTOR -6
H «— computeTF(%,0)
end
return (False,)

© 00 N O g & 0N =

- =
N = O

- =
H W

8.3.1 Taking into account computational errors

If for the filter which needs to be verified we have information concerning its Fixed-Point
implementation, we should take into account the influence of the computational errors (from the
time domain) on the frequency behavior of the filter.

137

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

Like in the previous Chapter, we consider the filter # implemented in Fixed-Point as a
sum of the exact filter # and a special error-filter A, see Figure 8.5. The error-filter takes as
input the signal e(k) bearing the bounds on the computational errors that occur on each step of
filter computation.

P y(k)
u(k)
7 y¥ (k)
e(k) Ay(k)
H°

Figure 8.5: Implemented filter

We cannot naively apply the technique similar to the case of transfer function computation,
i.e. simply subtract the bound [le(&)|l ((A#)) from the bands on filter’s frequency response. The
reason is that the magnitude response is a sort of a “relative” measure: rescaling the input signal
in the time domain will not change the magnitude response. However, even though the signal
&(k) depends on the inputs signal w(k), this dependence is not linear (and is actually dependent
on our rounding operator {(-)).

All we can say at this point is that the spectrum of the output of an implemented filter is
Y%(2)=HR@UR)+AHR)E(R), |zl<1, (8.14)

where E(z) denotes the Z—transform of the signal £(%). If we re-write this equality as

E(z)

Y9(2) = |H(z) + AH(2) Uz), lzl<1, (8.15)
U(z)
we see that the factor % represents a sort of “rescaling” the errors relatively to the inputs.

Because of the U(z) in the denominator, bounding AH(2)$& is difficult because we would

need to determine the infimum of U(z) for all z on the unit circle.

Thus, at the time being, we can deduce the bound | &l ({(AF£)) from the [Y (2)], i.e. from
the “absolute” measure of the output magnitude and not from the “relative” measure |H(z)I.

We believe nevertheless that information on the bound on the output of the error filter might
help us to establish clearly the relation between the errors in time and frequency domains.

138

8.4. NUMERICAL EXAMPLES

Figure 8.6: Implemented digital filter.

8.4 Numerical examples

The algorithm presented in Section 8.2 was implemented using Python version 2.7.10, the Sollya
tool® and pythonSollya®, which is just a wrapper of Sollya tool for usage in Python. We use our
implementation of the algorithm for the WCPG computation in arbitrary precision from Chapter 6,
which is written in C, using GNU MPFR version 3.1.12, GNU MPFI version 1.5.1 and CLAPACK
version 3.2.1. Experiments were done on a laptop computer with an Intel Core i5 processor
running at 2.8 GHz and 16 GB of RAM.

We present three different use cases of our algorithm illustrated with examples. The first
example is based on a filter given with its Simulink, the second example is based on four different
implementations of a filter with simple frequency constraints and the third example is based on
our key filter specifications from Chapter 1 Section 1.4.3.

Example 1: Our tool can be used to certify an already existing filter implementation. Consider
the implementation represented as the Simulink data-flow graph of Figure 8.6, with gains given
as 8-bit constants g1 = 0.34765625, g9 = 0.3359375 and g3 = 0.08496094.

The task is to verify whether the given implementation is a lowpass filter which satisfies fol-

lowing normalized frequency constraints: passband w, = 0.1 with passband amplitude between
1 dB and 3 dB, stopband starting ws = 0.3 with minimum attenuation 20 dB.
First, we exactly convert the Simulink graph to SIF (for which we can compute the transfer
function with arbitrary precision). Then, we apply our algorithm from Section 8.3 and obtain a
positive result in 1.9s. Thus, we obtain a guarantee that the given filter implementation satisfies
the desired frequency response requirements. Remark that Figure 8.6 represents a Lattice
Wave Digital Filter, the coefficients of which are usually derived from the specifications using
direct formulas without actually computing the filter’s transfer function [101].

2Commit 2828 at master, https://scm.gforge.inria.fr/anonscm/git/sollya/sollya.git
3Commit 146 at master https://scm.gforge.inria.fr/anonscm/git/metalibm/pythonsollya.git

139

https://scm.gforge.inria.fr/anonscm/git/sollya/sollya.git
https://scm.gforge.inria.fr/anonscm/git/metalibm/pythonsollya.git

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

wordlength 32 16 8
i I I
DFIIt r.nargln v unstable unstable
time 12s - -
i v v 4.68-1073 dB
o DFIlt _fargn
time 13s 4s 104s
state-space margin 6.16-1071° dB v 6.71-10"! dB
Balanced time 12s 18s 92s
i 3.80-1071°dB v 1.73-1072 dB
Lattice Wave 7r.nargm
time 920s 4s 200s

Table 8.1: Checking quantized realizations.

Example 2: Suppose we design a filter satisfying following frequency constraints: sampling
frequency Fs = 48 kHz, passband up to 2.4 kHz with amplitude in [-0.5dB;0.5dB]; stopband
starting 7.2 kHz with minimum attenuation 80 dB.

Suppose also that we have four different filter realizations: a Direct Form Il transposed, a
Direct Form Il transposed with optimized p operator [156], a balanced state-space [157] and a
Lattice Wave Digital Filter [101]. These realizations have different number of coefficients and
were designed using different approaches that are beyond the scope of this demonstration. Their
floating-point coefficients are results of various approximations and optimizations specific for
each structure (the reader can find them in the Appendix 3.3).

Our goal is to verify whether after quantization of the coefficients to different formats these
realizations will satisfy the given frequency response constraints.

The results of verification of the above realizations are listed in Table 8.1 (here we were inter-
ested in quantization to 32, 16 and 8 bits). We can observe that for certain filters a specification
is fulfilled only if some margin is added; for certain cases that margin is as large as 0.67 dB.
Some interesting effects may occur: the balanced state-space and Lattice Wave structures with
32 bits coefficients do not pass the verification but the coefficient quantization effects cancel out
for 16 bits and verification “luckily” passes.

If 16-bit quantization is the target format, we see that except DFIIt, all structures verify the
specifications and now the designer may concentrate on choosing the best realization according
to other criteria (for example, number of coefficients or datapath delay). If 8-bit quantization is
the target format, the verification margins computed with our tool can be used to redesign the
realizations and repeat the verification. On the other hand, if the realizations are impossible to
redesign, we can determine what is the maximum quantization of the coefficients for which our
tool gives a positive answer.

Finally, for the cases when the transfer function respects the band specifications our algorithm

140

8.5. CONCLUSION

Butterworth Chebyshev Elliptic
i 10-12 o2
Matlab OK/margin 5.44 10712 dB v 8.94 -1072 dB
time 167s 17s 16s
i 1075 102 10-2
Python Scipy Ofmargin 8.99-10°dB 7.34-10 8.94 -10
time 70s 97s 22s

Table 8.2: Verification of transfer function design methods for our key specification examples.

gives an answer quickly. Most time is spent on computing the verification margin, especially
when an overflow is on the edge of the band.

Example 3: Finally, our algorithm can be used to certify the result of different design methods
even before structure choice or quantization.

Recall our key example of frequency specifications for a lowpass filter. We saw in the
beginning of this chapter that the quantization of the corresponding transfer function (designed
with Elliptic method in Matlab) to 16 bits resulted in obvious violation of frequency specifications.
Now, we propose to verify whether the Elliptic method from Matlab generated a valid transfer
function or, perhaps, some other design method is better.

We propose to generate transfer functions (of degrees determined as minimal by Matlab) for
our key filter example using Butterworth, Chebyshev Il and Elliptic methods. We use standard
implementations of these methods in Matlab and SciPy.

From Table 8.2 we see that only Chebyshev design method from Matlab instantly satisfies
the specifications. However, Butterworth method from Matlab has a small design margin that is
probably due to the double precision computations. On the other hand, we see that there are
clearly some issues in the design of the Elliptic filters in both SciPy and Matlab. This may be due
to the fact that both tools propose a way too small degree for the transfer function of this type.
On the other hand, even these margins may be acceptable depending on filter designer’s needs.

Thus, our algorithm can be used to certify that the filter design method is rigorous, or give
the designer a perception of the sufficient correction of the design margin.

8.5 Conclusion

In this Chapter, a rigorous method to verify a transfer function of LTI digital filters against band
specifications in the frequency domain has been developed. It relies on translating the problem
of verifying bounds on magnitude response evaluated on a unit circle to the verification of
positivity of a real polynomial. Our algorithm guarantees that no false positives occur. In the

141

CHAPTER 8. RIGOROUS VERIFICATION OF IMPLEMENTED FILTER AGAINST ITS
FREQUENCY SPECIFICATION

case of unsuccessful verification a list of problematic frequencies is provided, for which we
compute the maximum violation of the band specification. We propose an implementation using
a combination of interval and rational arithmetic in Sollya tool.

We applied this method to develop an approach on the verification of any implemented filter.
It relies on the multiple precision computation of a transfer function corresponding to the filter
in SIF representation that we have developed in Chapter 5. The core idea behind the method
is to bound the error of approximation of the transfer function using the WCPG. Thus, through
the WCPG measure we obtain a relationship between the frequency domain errors (due to the
approximation or quantization) with the time domain errors.

This approach opens various possibilities on the verification of digital filters, as well as for
transfer function design tools. Even a naive comparison of the state-of-the-art tools and methods
revealed weaknesses in the Python SciPy library, as well as frequent issues with the Elliptic
method for IIR filter design in both Scipy and Matlab.

Moreover, our verification algorithm can be applied to compare different filter structures with
various Fixed-Point settings for the coefficients. Such a comparison offers a filter designer an
overview of the implementation possibilities. On top of that, the information on the verification
margin can be used to correct a design that fails to verify the initial band specifications. For
instance, we can narrow down the initial band by the verification margin and re-design the filter
with the new band specifications. Then, the re-computed filter with quantized coefficients should
respect the initial conditions. Finally, using the list of problematic frequencies we can probably
improve the rational Remez [24] algorithm that is often behind the transfer function design.

To conclude, this algorithm perfectly integrates in our automatic code generator as a tool for
the a posteriori verification of an implemented filter, i.e. a certification that after all manipulations
with filter’'s coefficients the frequency response indeed has desired behavior. Also, we can use
our algorithm as a tool assisting the filter designer even on early stages of the implementation.

However, overall time-efficiency of our implementation can still be improved. Passing too
much time on the computation of the verification margin can be a significant drawback were the
algorithm to be used during the exploration of a large design space. Nonetheless, this limitation
can be overcome by setting an initial acceptable design margin, which directly depends on the
application of the filter.

Naturally, the next step would be determining the relationship between the computational
errors in time domain with the behavior of filter's magnitude response. However, we show that
this task is not as straightforward as in case of quantization errors. For the moment, we only
described the spectrum of the output of the filter. We have a strong belief that the information on
the upper bound of the output error (error due to the rounding errors) will help us in solving this
problem.

142

PART IV

HARDWARE CODE GENERATION

143

CHAPTER

LTI FILTERS COMPUTED JUST RIGHT ON FPGA.
IMPLEMENTATION OF DIRECT FORM |

n this Chapter we present our first steps towards reliable implementation of recursive filters
on hardware targets, in particular on Field Programmable Gate Arrays (FPGAs) [158]. This
work was done in collaboration with the FloPoCo [15] project that provides tools for the
generation of VHDL, a hardware description language. In particular, FloPoCo provides code
generation for Fixed-Point (FxP) cores under the motto “computed just right”. More precisely,
the generated architectures are guaranteed to have an implementation error no larger than the
weight of the least significant bit of the output.
One of the cores provided by FloPoCo is a Sum of Products by Constants (SOPC), i.e. an
architecture computing

N
r=Y o (9.1)
i=1

for a set of real constants ¢; and a set of FxP inputs v; such that the computed result is a faithful
rounding of the exact result r.

On the other hand, one of the simplest structures for the SISO recursive filters, Direct Form
| (DFI) is one big SOPC plus some delays. While not being used for an implementation of
high-order filters due to high sensitivity to rounding errors, this structure can be used for second-
or third-order filters. Thus, we decided to do first experiments in the reliable implementation of
LTI filters in hardware by proposing the implementation of DFI using FloPoCo cores as basic
bricks. Looking ahead, we can say that this work will directly lead to the general approach
applicable to any filter structure, described with SIF.

In Chapter 7 we showed how to determine reliable FxP formats with hard wordlength
constraints and how to estimate the eventual output error using the Worst-Case Peak Gain
(WCPQG) of the system. Now we are turning the problem around: the error constraint is considered
to be hard (in the sense that it is guaranteed be met) while the wordlengths may be changed,
i.e. increased if needed.

To specify an implementation, a designer needs not only to determine the formats of the

145

CHAPTER 9. LTI FILTERS COMPUTED JUST RIGHT ON FPGA. IMPLEMENTATION OF
DIRECT FORM |

variables involved in computations but also to quantize the coefficients of the structure. Obviously,
we are interested in the coarsest quantization while respecting the output error bound. The main
contribution of this Chapter is to show that these design decisions can be automated such that
designer may focus on other design parameters.

We use the techniques proposed in the previous Chapters to provide an error analysis that
captures not only the rounding errors but also their infinite accumulation in IR filters. This error
analysis then guides the design of hardware satisfying the accuracy specification at the minimal
hardware cost.

This work is based on a paper “Hardware IIR Filters: Direct Form | Computing Just Right”
which has not yet been submitted but available online as a technical report [16].

9.1 Introduction

We remind the reader that the transfer function H(z) of a LTl filter is given with

Yo biz
H(z) i=0 . VzeC. (9.2)

1+ Z?ﬁlaiz"
In time domain it corresponds to the following Constant-Coefficient Difference Equation:

n g
y(k) = ibiu(k—i)—Zaiy(k—i). (9.3)
i=0 i=1

Equation (9.2) or (9.3), along with a mathematical definition of each coefficient a; and b;,
constitute the mathematical specification of the filter algorithm that we will implement.

In the following we deal with the implementation of such a specification as FxP hardware
operating on low-precision data. Figure 9.1 illustrates the simple interface of the tool that
we propose. The coefficients a; and b; are considered as real numbers: they may be pro-
vided as high-precision numbers from e.g. Matlab, or even as mathematical formulae such
as sin(3*pi/8). The integers ¢in and ¢oy; respectively denote the bit position of the least
significant bits of the input and of the result. In the proposed approach, ¢, specifies output
precision and output accuracy. Without loss of generality, the MSB of the input is set to 1.

Our tool provides the construction of a minimal-cost architecture of proven last-bit accuracy.
We provide implementation on FPGAs based on Look-Up Tables (LUTs). We put the FloPoCo
tool in charge of the automatic generation of VHDL for our architecture.

Our tool also incorporates several architectural novelties. The SOPCs are built using a
modification of the KCM' algorithm [159, 160] that manages multiplications by a real constant

TKen Chapman’s multiplier for constant coefficient multiplication.

146

9.1. INTRODUCTION

{ai}1<icn,» {bio<icn, —)] LTI Filter
. architecture .vhdl
input format (1, 4i,) generator
output accuracy oyt / \

FPGA frequency

Functional spec. Performance spec.

Figure 9.1: Interface to the proposed tool.

without needing to truncate it first [161]. The summation is efficiently performed thanks to the
BitHeap framework recently introduced in FloPoCo [162]. These technical choices lead to logic-
only architectures suited even to low-end FPGAs, a choice motivated by work on implementing
the ZigBee protocol standard [163]. However, the same philosophy could be used to build other
architecture generators, for instance exploiting embedded multipliers and DSP blocks.

First, we justify our choice of the faithful rounding as the main goal.

9.1.1 Perfect and faithful rounding

The rounding of a real such as our ideal output y to the nearest fixed-point number of precision ¢
bits is denoted o4 (). In the case of round to nearest, it entails an error | o, (y(k)) — y(k)| < 2671,
So, the best we can do, when implementing (9.3) with a precision-¢ output, is a perfectly rounded
computation with an error bound goyt = 2°71.

Unfortunately, reaching perfect rounding accuracy may require arbitrarily large intermediate
precision. This is not acceptable in an architecture that has very limited resources. We therefore
impose a slightly relaxed constraint: €qyt < 2¢. We call this last-bit accuracy, because the error
must be smaller than the value of the last (LSB) bit of the result. It is sometimes also faithful
rounding in the literature.

The main reason for choosing last-bit accuracy over perfect rounding is that, as will be
shown in the sequel, it can be reached with very limited hardware overhead. Therefore, in terms
of cost and efficiency, an architecture that is last-bit-accurate to ¢ bits makes more sense than a
perfectly rounded architecture to ¢ — 1 bits, for the same accuracy bound 2°.

The main conclusion of this discussion is the following: specifying the output precision (€qyt
on Figure 9.1) is enough to also specify the accuracy of the implementation.

This is a huge improvement over classical approaches, such as the various Matlab toolboxes
that generate hardware filters. In such approaches [164], one must provide ¢,; and various
other parameters that impact the accuracy, then measure via simulations the resulting accuracy,

147

CHAPTER 9. LTI FILTERS COMPUTED JUST RIGHT ON FPGA. IMPLEMENTATION OF
DIRECT FORM |

ukk) — A [yk)

ulk) —+—— # ——+— Youlk)
0, %in) (mout, out)

Figure 9.2: The ideal filter (top) and its implementation (bottom)

and iterate until a satisfactory implementation has been reached. Not only is the proposed
interface simpler, it also enables architecture optimization under a strict accuracy constraint. An
optimal architecture will be an architecture that is accurate enough but no more.

9.2 Error analysis of direct-form LTI filter implementations.

On the one hand we have the exact mathematical definition (9.3) of a filter 4. On the other
hand, we aim at providing a fixed-point implementation .7 with a last-bit accuracy. The two
filters # and /€ are exhibited on Figure 9.2.

The first thing to do is to determine the MSB position of the output (mqyt). We use the
Worst-Case Peak Gain Algorithm presented in the Chapter 6 and our classical decomposition
of an implemented filter into a sum of an error-filter and the exact filter. As we have seen in
Chapter 7, the rounding errors can propagate all the way to the MSB. Since we are going to
ensure that the rounding errors will be bounded by 2¢e«t, we just use this information and apply
Lemma 7.2 from Chapter 7 to compute the MSB position.

Instead of computing y(%k) with equation (9.3), we will compute an approximation y(k) of
the involved Sum of Product by Constants (SOPC) using some internal format (mqyt, £ext). Our
goal is to determine this internal LSB position that satisfies the last-bit accuracy for the format
(mout, Cout)-

The value y(%) is an approximation of the ideal value y(k) computed with some rounding
errors, and the final output yo,t(k) will be the rounding of this intermediate value y(k) to the
output format. This scheme is summed up by the abstract architecture of Figure 9.3. Then, our
goal is to solve the following problem:

Problem |

For a LTI filter evaluated with the abstract architecture from Figure 9.3, determine the

least internal format (mqyt, Zext) that guarantees the output faithfully rounded to the format

(mout, Cout)-

148

9.2. ERROR ANALYSIS OF DIRECT-FORM LTI FILTER IMPLEMENTATIONS.

(0,4in) u(k —1) u(k —2) u(k —3) y(k—3) y(k—2) y(k—1)
u(k) =

y(k) final ~
(Mot foxt) round [(mout, four) Your (K)
Figure 9.3: Abstract architecture for the direct form realization of an LTI filter
Formally, the overall evaluation error may be defined as
€out(R) = Yout(k) — y(k). (9.4)

Let us now decompose this error into its sources and adapt our approach from Chapter 7 for
this new task.

Final rounding of the internal format The first source of error that is easy to isolate is the
final rounding error. The architecture needs to internally use a fixed-point format that offers ex-
tended precision with respect to the input/output format. This extended format (m oy, £ext) Offers
additional LSB bits sometimes called guard bits. Eventually we need to round the intermediate
result in this extended format to the output format (in the “final round” box on Figure 9.3). This
entails an additional error ¢;, formally defined as

&t(k) = Yout(k) — y(k). (9.5)

This error may be bounded by & = 2et~1 as round to nearest is easy to achieve here.

Remark that we feed back the intermediate result y(k) (on the extended format), not the
output result youi(k). This prevents an amplification of e;(k) by the feedback loop that could
compromise the goal of faithful rounding.

Rounding and quantization errors in the sum of products Our approach proposed in

Chapter 7, is based on the estimation of the error amplification through the feedback loop. For

this, we have fed the bounds on the errors due to the computations on each filtering iteration into

a special error filter. These error bounds depend on the particular way we do the computations.
In our case, denote by ¢,(k) the errors due to computation of SOPCs as

ny ng
eR)=5(k) Y biuk—i)- Y a;iyk—1)|. (9.6)
=0 =1

This equation should be read as follows: £,(k) measures how much a result y(k) computed
by the SOPC architecture diverges from that computed by an ideal SOPC (that would use the

149

CHAPTER 9. LTI FILTERS COMPUTED JUST RIGHT ON FPGA. IMPLEMENTATION OF
DIRECT FORM |

u(k) y(k)
—

yout (k)

k
& (k) 7,

(k)

Figure 9.4: A signal view of the error propagation with respect to the ideal filter.

infinitely accurate coefficients a; and b;, and be free of rounding errors), this ideal SOPC being
applied on the same inputs u(k — i) and y(k — i) as the architecture.

These rounding errors £.(k) can be made as small as required if we increase the internal
precision of the SOPCs denoted fqy. In Section 9.3 we give an idea on how to build an SOPC
architecture that achieves a given accuracy goal at minimum cost.

9.2.1 Complete error model

So, let us now give more details on the complete error model. As in the Chapter 7, we model the
actually implemented filter as a sum of the exact filter and special error-filter (see Figure 9.4).
Applying the WCPG theorem upon the error-filter #, we obtain a bound &; on its output

& = (He) €, (9.7)

where the WCPG (/) is a scalar since we consider the error ¢;(%) is scalar and the error-filter
is SISO. Remark that we can reduce the €; by increasing the internal precision fey:.
Then, the overall error of the implementation is

Eout =€+ (AN Er (9.8)

The objective of faithful rounding translates to the accuracy constraint £qyt < 2°o+t. Taking
into account the final rounding (which implies the error & = 2«~1) we obtain the constraint on
the internal precision of SOPCs that is required to satisfy the faithful rounding of the result:

. 2[0ut_1
2 ext < 99
(o) (9-9)
The least integer value of £¢y; is
Coxt = Cout — [logg (AN — 1. (9.10)

The reader might have remarked that the MSB of the internal format is the same as that of the
result (mout). Some overflows may occur in the internal computation but since the computation
is performed modulo 2™t the final result will be correct.

150

9.3. SUM OF PRODUCTS COMPUTING JUST RIGHT

{cihi<i<n

SOPC

input formats {X;,¢;}1<i<N architecture .vhdl
generator

output format (m;, ;)

Figure 9.5: Interface to a sum-of-product-by-constant generator.

9.3 Sum of products computing just right

Our implementation is based on an arithmetic unit for the computation of SOPCs provided by
FloPoCo project. Our error model is based on the assumption that we can obtain an architecture
computing the SOPC (9.1) for a set of real constants c¢;, and a set of fixed-point inputs v; such
that the computed result respects a priori given error bound.

Previously, our co-authors [165] proposed a tool for code generation of the faithfully rounded
SOPC architectures. However, they had an assumption that all the v; shared the same format.
In the context of an LTl filter, this is no longer true: on Figure 9.3, we have a single SOPC where
the ¢; may be a; or b;, and the v; may be either some delayed u;, or some delayed y;. The
format of the y;, as determined by previous section, is in general different from that of the u;.

Therefore, we propose a more generic interface to the SOPC generator, where the format of
each input may be specified independently. This interface is shown on Figure 9.5. Specifically,
the input LSBs are provided as ¢;. Instead requiring the input MSBs, the interface uses the
maximum absolute values x; of each v;. This is an implementation choice adopted from the
initial SOPC interface proposed in [165]. Here again, the weight ¢, of the least significant bit
of the SOPC output also specifies the accuracy of this SOPC: the result is guaranteed to be
faithfully rounded to 2¢" bits.

Thus, to use the above interface in the context of filter implementation, we must require the
SOPCs to give the result in the format m, = moyt and £, = lext.

The aspects of hardware implementation of the SOPC unit are out of scope of this thesis.
We refer the reader to [16] for the detailed description of the approach. However, we will try to
give a general idea on the approach below.

9.3.1 General idea

The task is to compute the SOPC r =) c;v; for a set of real constants c¢; and a set of FxP
inputs v; such that such that the output in format (m,, ¢,) is faithfully rounded. Performing all
the internal computations to the output precision ¢, would in general not be accurate enough
to achieve faithful rounding, due to the accumulation of rounding errors. The solution is, as
previously, to use a slightly extended precision ¢, — g for the internal computation: g is a number

151

CHAPTER 9. LTI FILTERS COMPUTED JUST RIGHT ON FPGA. IMPLEMENTATION OF
DIRECT FORM |

of “guard” bits. As this extended precision will require more hardware, we need to compute the
extended precision that will minimize this hardware overhead.

The overall error of the architecture depends on the errors of each multiplication and on the
errors of accumulation. We repartition the error budget 2~ and deduce the maximum error of
these multiplications such that the result is faithfully rounded to the LSB ¢,.. This part is quite
independent on the target technology: it could apply to ASIC synthesis as well as FPGA.

It can be shown (see the original report [16] for details) that a significant cost gain can be
achieved by using look-up tables (LUTs) [158] for multiplication on FPGAs. The idea is to tabulate
possible values for v; and thus build a faithfully rounded multiplier. The pre-computation of table
values must be performed with large enough accuracy (using multiple-precision software) to
ensure the correct rounding of each entry.

Our implementation first invokes, for each constant, an algorithm that returns the maximum
error that will be entailed by a multiplier by this constant. This error is expressed in units in the
last place (ulp), whatever the value of g will be. The implementation sums these errors, then
uses this sum to compute the number of guard bits g that will enable faithful rounding. Once this
g has been determined it may proceed with the actual construction of the multipliers.

It may appear to be rather costly to use a large mount of LUTs to compute the SOPCs.
However, using the associativity of fixed-point addition, the final summation can be implemented
very efficiently using compression techniques developed for multipliers [166] and recently applied
to sums of products [167, 168]. In this work, we use the bit-heap framework introduced in [162].

9.4 Implementation results

The approach described in this Chapter was implemented as the FixIIR operator of FloPoCo.
FixIIR offers the interface shown on Figure 9.1, and inputs the c¢; as arbitrary-precision
numbers. We performed synthesis for the Xilinx Virtex-6 (6vhx380tff1923-3) using ISE 14.7.

Consider again our key filter example of a 8" order lowpass filter with the corresponding
transfer function from Chapter 1 Section 1.4.3. We propose to compare implementations that
guarantee different accuracy, for example for 8, 12 and 16 bits. We suppose that inputs are in
every implementation are as accurate as the required output.

The results of synthesis are displayed in the Table 9.1, where the smaller area or the number
of LUTs the better and the higher speed the better. In this example we had that the number of
guard bits for the internal computations is g = 14, therefore we ask for SOPC faithful to 2722,
2726 and 2739 for the case of 8, 12 and 16 bit implementations respectively.

This example shows that our tool is ready-to-use and that no special knowledge of filter error
analysis is required from the user.

152

9.5. CONCLUSION

Area Speed
Registers LUTs | MHz
8 bits 272 2584 | 168.7
12 bits 336 3352 | 169.6
16 bits 400 4432 | 151.9

Table 9.1: Synthesis results for the key filter example.

9.5 Conclusion

In this Chapter we claim that sum-of-product architectures for LTI filters should be faithfully
rounded and no more. We demonstrate that it gives a much clearer view on the trade-off between
accuracy and performance, freeing the designer from several difficult choices. We provided an
actual open-source “push-button” tool that offers the highest-level interface.

Designers of non-recursive LTI filters may compare their implementations using repositories
of benchmarks?. Unfortunately, no benchmarks for IR filters are available. Moreover, very few
of the publications mention reports on the accuracy results. Thus, it is extremely difficult to
compare our designs with the existing ones. We plan to provide a repository of benchmarks for
lIR filters to enable such comparison.

We have only considered here the implementation of a filter once its coefficients are given.
Approximation algorithms, such as Parks-McClellan [169] that compute these coefficients es-
sentially answer the question “what is the best filter with real coefficients that matches this
specification”. It is legitimate to wonder if asking the question: “what is the best filter with low-
precision coefficients” could not lead to a better result. We believe that in this case our algorithm
for the verification of digital filters against frequency specifications can come at hand not only as
an a posteriori verification tool but as an indicator of the direction for the rounding.

Finally, the reader may rightfully remark that in all previous chapters we relied on the SIF
and extended our algorithms to any filter while in this Chapter our approach works only for the
Direct Form . In fact, SIF can be seen just as a sum of products: each element of the temporary,
state and output vector is computed with a SOPC. Thus, to adapt the above approach for SIF,
we just need to provide an error analysis determining the least accuracy of each sum of product
in the SIF computation that guarantees that the filter's output is faithfully rounded to the output
format. This work is already in progress, again in collaboration with the authors of the FloPoCo.

°http://www.firsuite.net/

153

http://www.firsuite.net/

CONCLUSION AND PERSPECTIVES

n this thesis we aimed at improving and extending the basic bricks for an automatic code

generator for digital Linear Time-Invariant filters. We were particularly interested in bringing

rigor and reliability into the practices of Fixed-Point implementation of recursive filters.
While this methodology for rigorous finite-precision implementation was central to our work, we
also improved other functionalities of the code generator: we extended the possibilities of the
unifying framework, added new applications and provided reliable hardware code generation.
Figure Z illustrates the new scheme of the tool. Sometimes a small detail would become an
indispensable part and often one question would hide ten others giving us smooth transitions
between subjects but at the same time leaving numerous “open doors”. In the following we
present the contributions and perspectives of this thesis.

Stage 1 Stage 2 Stage 3 Stage 4

analysis Fixed-Point FxP Software ASIC VHDL

data-flow SIF | apriori settings FPGA

formats

TF SIF
SIF i C
Quality |, Reliable Code generation

Figure Z: The workflow of the automatic code generator.

155

CONCLUSION AND PERSPECTIVES

Doing more — extending and improving SIF

The automatic code generator we worked with uses its own internal format, called Specialized
Implicit Form (SIF), to represent any linear filter. SIF encapsulates in an analytical form the
description of different computational algorithms for filters. A typical use-case of the code
generator starts with conversion of a filter’s transfer function into a SIF model describing some
particular structure. We started by improving and extending the possibilities of the SIF model.

First we extended the dictionary of available SIF models by adding a new filter structure,
Lattice Wave digital filters. Given a filter’s transfer function we can now compute the coefficients
of the Lattice Wave structure and model the order of computations with SIF. This rather tedious
and technical task led to the deeper understanding of the SIF [7].

Then we proposed a completely new possibility for the framework: a conversion of data-flows
which describe LTl filters into the SIF. Based on the filter’s graph description we determine the
feedback loop and order of computations. We support data-flows in Matlab Simulink format which
is one the most widely used formats in both academia and industry. With this new conversion
algorithm we can analyze and implement an already existing filter design with our generator [12].

Finally, we proposed an algorithm for reliable computation of a transfer function for any
filter [9]. We provided an algorithm that computes a multiple precision approximation of a transfer
function along with a rigorous bound on the approximation error in terms of a certain norm
(we can easily go beyond double precision). To achieve this, we use reliable evaluation of the
¢1-norm of a filter's impulse response, and a multiple precision eigendecomposition®. This
contribution is important not only for our automatic code generator but also as a standalone
tool: it provides an easy way for anyone working with filter algorithms to reliably determine the
corresponding transfer functions.

Doing things rigorously — reliable determination of the filter’s
dynamic range

To provide a reliable implementation of any algorithm in the Fixed-Point arithmetic the first step
is to determine the dynamic range of all variables involved in the exact filter algorithm.

With our work we provided an algorithm [11] to compute with arbitrary accuracy the upper
bound on the output of a filter. It is based on a well-known object,the Worst-Case Peak Gain
measure which, however, could not be reliably computed before but only approximated without
any bound on the approximation error. We provided a new technique that permits a reliable

3In the sense that all operations are be performed with multiple precision. However, no information on the
accuracy of the computed eigenvalues is available.

156

CONCLUSION AND PERSPECTIVES

evaluation of the WCPG. This part of the thesis required a rigorous error analysis of the
floating-point evaluation of the WCPG.

The WCPG measure is based on the evaluation of an infinite series. We proposed a formula
for the determination of truncation order with an a priori bound on the truncation error. For this,
we use a combination of multiple precision interval arithmetic and of the Theory of Verified
Inclusions. To evaluate the truncated series we use multiple precision computations and adapt
the precision just enough to meet an a priori given requirement on the accuracy. A non-trivial part
was getting around the absence of a multiple precision eigensolver with reliable error bounds
which we needed at some point in our algorithm. All error bounds are based on proofs and the
algorithm was extensively tested.

Using our result, filter designers now have a proven guarantee on the dynamic range of all
variables involved in exact filter evaluation. We also provide an adaptation of our algorithm for
the case when the filter coefficients are represented as intervals. This adaptation is useful when
a filter’s parameters are results of some measurements or computations.

Considering everything — taking into account the accumulation of
computational errors

During the filter implementation, the designer must make several choices that influence the cost
and the accuracy of the implemented system. Usually, you get the one at the expense of the
other and, therefore, a Pareto-optimal solution that respects a trade-off must be found. The
basic problem in the determination of the trade-off is: given wordlength constraints for each
variable to determine the best Fixed-Point formats that ensure that system is reliable (i.e. no
overflow occurs) and to obtain a tight bound on the error. In other words, we look for the least
Most Significant Bit (MSB) position that ensures that no overflow occurs. We provided a rigorous
methodology [13] for the solution of this problem. The difficulty consisted in the fact that the
dynamic ranges determined with the WCPG measure correspond to the exact filter and not the
implemented one. In some cases rounding errors due to the finite-precision computations may
propagate up to the MSB. To fully take this fact into account we had to rigorously capture the
non-linear propagation of the computational and quantization errors through recursive filters. We
achieved this by exploiting certain properties of the linear filters and using our reliable WCPG
measure. We prove that we either determine the MSB positions exactly or overestimate them at
most by one, hence we prove that no overflow occurs. The overestimation may come from the
fact that the value of the MSB is determined using approximated quantities (WCPG measures).
In these rare cases we might need to increase the accuracy of the approximations. However,

157

CONCLUSION AND PERSPECTIVES

this includes, amongst other ideas, an instance of the Table Maker’s Dilemma [35]. Finally, using
the WCPG theorem we determine a tight bound on the output error of the filter. We never use
any simulations, our algorithms are exclusively based on mathematical proofs.

Overall, our algorithm has reasonable timings that permit to use it extensively during the
exploration of a large design space in search of the trade-off between implementation constraints.
We can also look at the problem from another angle and instead of fixing the wordlengths and
determining the errors this choice yields to, determine the least wordlengths necessary to
guarantee a certain fixed error bound.

With this approach we enabled the kernel functionality of the automatic code generator.
However, our approach of reliable computation of the bound on the implementation error can be
used as an independent methodology.

Being sure — verification of an implemented filter against
frequency specifications

We presented reliable algorithms, based on multiple precision floating-point and interval arith-
metic with proven error bounds, for the determination of the Fixed-Point parameters of the
implementations. However, guaranteed error bounds are not worth anything if the implemented
filter does not demonstrate desired frequency domain behavior. We proposed an algorithm [9]
for rigorous verification of filter realizations against frequency constraints. Our algorithm must be
rigorous in the sense that it never returns a false positive answer.

First, we proposed a basic brick verification algorithm for the transfer functions. This algorithm
relies on the combination of different techniques and our implementation makes use of interval
and rational arithmetic in the Sollya tool. Our algorithm guarantees that no false positives occur.
In the case of a negative answer, a list of “problematic” frequencies is returned.

Further, using SIF we extend this verification upon any filter realization. We can compute
an approximation of the transfer function of any realization through the SIF and take the
approximation error into account during the verification. We proposed a heuristic algorithm that
performs such a verification. Again, we guarantee that no false positive answers occur while
false negatives are potentially possible, even though we never observed any.

Our verification algorithm opens numerous possibilities apart from a rigorous verification of
an existing implementation. It can be used extensively during the design of a filter: via the list of
“problematic” frequencies we obtain an indication on how we can redesign the filter such that
its implementation passes the verification. Finally, we can compare the quality of different filter
design tools.

158

CONCLUSION AND PERSPECTIVES

Doing things in practice — applications for the hardware
implementation

After providing basic bricks for the generation of Fixed-Point algorithms we did a few steps
towards implementation of recursive filters on Field Programmable Gate Arrays (FPGASs). The
designer of a hardware implementation must make numerous choices concerning the imple-
mentation: quantize the structure’s coefficients, choose intermediate and input/output formats,
etc. We show that we can automatize a large part of this process. For this, we exploited the
possibilities of the hardware code generator called FloPoCo [15] which provides tools for the
generation of arithmetic cores “computed just right”. We used their fixed-point core for the
computation of Sums of Products by Constants (SOPC) as a basic brick for the implementation
of filters in the Direct Form | (DFI) structure. We justify our choice of structure by the fact that DFI
is usually represented as SOPC and, therefore, is a good candidate for the first steps towards a
more general approach on the implementation on FPGAs.

As a result, we provided an open-source “push-button” tool* that generates a hardware
architecture the output of which is guaranteed to be faithfully rounded. Using the WCPG theorem
we deduced the least number of guard bits with which the SOPC in the DFI must be computed.
In collaboration with the authors of FloPoCo we adapted the SOPC generator to our needs.
More precisely, we built an SOPC generator that takes real coefficients as inputs and optimally
truncates them. Optimality is in the sense that the SOPC determines internally the least number
of bits for the coefficients such that the output accuracy is guaranteed. This is a significant
improvement that frees the filter designer from the difficult choice of quantization scheme. On
top of that, we provided code generation specific for Field Programmable Gate Arrays (FPGAS)
based only on Look-Up Tables (LUTs). These logic-only architectures are suited even to low-end
FPGAs.

Even though dedicated to a particular structure, DFI, this work brings us one step closer to
a general approach for the reliable implementation of any LTI filter on FPGAs. In fact, any filter
described with SIF representation is just a set of SOPCs. Thus, we can proceed analogously
to the case of the Direct Form | structure: determine the least required number of guard bits
for the computation of SOPCs such that the output error bound is satisfied. We have a strong
belief that the resulting tool will interest industrial partners from the domain where reliability of
the systems is of great importance (e.g. aerospace industry, automotive industry, etc.).

4Implemented as FixIIR module in the FloPoCo tool.

159

CONCLUSION AND PERSPECTIVES

What is left to do — over the horizon

With this thesis we paved the road towards reliable implementation of digital filters and now we
are on the crossroad of perspectives.

Short term In the short term we will need to improve the obtained results. First we propose
to consider the spectrum of the input signal in our methodology. Indeed, often in real-life
applications a filter designer has more precise information on the frequency behavior of the input
signal than just an interval. | believe that it is possible to adapt the WCPG theorem to satisfy this
setting [14].

Another problem that might require our immediate attention is the potential overestimation
of the MSB positions by one bit. This issue might, however, require some deeper investigation of
the set of reachable states of an implemented LTI system and risks to become rather a mid-term
than a short-term perspective. While probably being less important from practical point of view
(in the end, 1 bit more or less might not matter), the off-by-one problem is interesting as a
phenomenon itself: it is an instance of the Table Maker’s Dilemma in the design of digital filters.

Finally, we should generalize our approach for the generation of reliable hardware archi-
tectures. Once the generalization is provided, it will be interesting to provide an extensive
comparison of hardware implementations of different structures for realization of different types
of filters.

Mid term In the mid-term | propose to first address the problem of a multiple precision
eigendecomposition. We have seen that the majority of our algorithms rely on the computation
of eigenvalues. Using the eigenvalues we determine the location of filter’s poles and, most
importantly, check the stability. To guarantee the stability of a filter all these poles must be in
the unit circle. Moreover, a rigorous verification of filter's stability is often a key step during
the exploration of a large design space and it must be performed quickly. In order to ensure
a reliable and fast verification, | propose to first provide a fast multiprecision algorithm for the
computation of the spectral radius of a non-symmetric matrix. Furthermore, a varying-precision
eigendecomposition with a rigorous output error bound will improve our algorithms, help with a
rigorous evaluation of the £9-norm of a filter and, consequently, sensitivity measures [34] of LTI
systems.

In our work we have come closer to the explanation of the link between errors that occur in
the time domain with the errors in the frequency domain. However, some effort is still required to
clearly explain the influence of rounding errors upon the frequency response of the filter. This

160

CONCLUSION AND PERSPECTIVES

work will have impact upon both theoretical understanding of digital filters and practical solutions
for reliable finite-precision (not only Fixed-Point but Floating-Point as well) implementations.

Another important remark concerning the behavior of filter’s frequency response is that
sometimes a violation of the specifications may be tolerated. For example, if the violation has a
small energy. To take this into account, we would need to revise our verification algorithm from
Chapter 8. However, finding preliminarily some real-life applications for such an improvement is
crucial.

It also remains plug all the steps of filter implementation into optimization routines that
permit to choose the Pareto-optimal structure according to the user's needs and to prove the
solution. We can start by first formalizing the possible user criteria and defining relationships
between them. For example using the WCPG we can easily obtain a relationship between
the wordlengths and the output error [6]. Other criteria, like the relationship between area
and power consumption, can be more application specific. | am convinced that using these
relationships we can formulate a generic optimization problem that will encompass the majority
of the implementation process. Once the optimization procedure of a filter in SIF representation
is done, it will be interesting to compare different structures between them. This study may
confirm existing empiric observations as well as show reveal new trends and properties of
different families of structures.

Long term In the long-term | see several major research axes.

The first one concerns the quantization of structure’s coefficients. An interesting point to
investigate may be the degree of liberty with which we can “move” the coefficients while main-
taining the desired behavior of the frequency response. The goal is to obtain coefficients with the
least number of ones and hence faster multiplications by this number. Take for example a binary
coefficient 1.49414062519 = 1.0111111015 multiplying by this coefficient is more complicated
than by 1.519 = 1.19. Of course, this is just a general idea and in hardware multipliers [158, 159]
the techniques are more complicated. The question is whether we can predict which coefficients
can be subject to such optimization of the binary expression and which cannot. | believe we can
use the techniques of transfer function coefficient sensitivity as the first hint and get inspiration
in the works of Muller and Torres [170]. However, the idea is to investigate such optimization for
an arbitrary structure and not only for a transfer function.

In the same spirit, a second prominent subject would be the study of new techniques for the
design of rational transfer functions whose goal is to find the best quantized to low-precision
coefficients. We could join forces with the authors of new robust techniques [171] for the design
of polynomial transfer functions. | believe that our transfer function verification algorithm can be
of great assistance in this study.

161

CONCLUSION AND PERSPECTIVES

The third direction is towards the unification of code generation for filters and mathematical
functions. Numerous common points have been invoked by the French ANR project “Metalibm”.
On the one hand, a filter is not a mathematical function, it processes signals and therefore
depends on history. On the other hand, in both filter and function implementation the final code
or circuit consist of the same primitives (addition, multiplication and pre-computed constant
values). In case of non-recursive filters both filters and functions often benefit from the Remez
approximation algorithm [24]. It is not surprising that there are similarities between the evaluation
schemes: Direct Form structure can be interpreted as Horner scheme, polyphase filters as
Estrin’'s scheme, etc. However, the study of analogies is not fairly possible without a rational
Remez algorithm available for the design of IIR filters.

Massive implementations of filtering algorithms for big data and artificial neural networks are
often performed on general purpose CPUs or GPUs. These targets possess a Floating-Point unit
but the robustness requirements still dictate short wordlength formats. Therefore, the problem of
the error-analysis of short Floating-Point implementations rises. | believe that this study might
greatly benefit from the methodology proposed in this thesis: Worst-Case Peak Gain measure,
transfer function verification algorithm, the error model, etc. What is non-trivial but promising is
to address artificial neural network algorithms themselves. In fact, for some neural networks, the
computations on each layer may be seen as (complicated) linear filters. Thus, the fourth main
research axis concerns expanding the area of application to machine learning algorithms.

So many possibilities open up when signal processing
and computer arithmetic meet.

162

CHAPTER

APPENDIX

1 Lattice Wave Digital Filter basic brick data-flows

In Part Il Chapter 4 we presented a conversion algorithm for the Lattice Wave Digital filters to
the SIF. Figures A.1-A. 4 illustrate the annotated data-flow graphs that correspond to the

subsystems of type A and B in Lattice Wave Digital filters.

m®) P -1 uglh) (kT —1 (k)
" :f |
}04 + g 1) |2
_;L t —1 t 7y
+ T ()
k) 2k +1)) 0\ skt 1)
(@) Type 1-A (b) Type 1-B
Figure A.1: Subsystems with adaptors of Type 1.
ur(k) —1 uz (k) ur(k) =1~ z(k)
))
1 by
¥ Y | &
H—’ g&
y1(k) y2(k) y1(k) z(k+1)
(a) Type 2-A (b) Type 2-B

Figure A.2: Subsystems with adaptors of Type 2.

163

APPENDIX A. APPENDIX

—

y1(k) z(k+1) y2(k) y1 (k) z(k+1)
(2) Type 3-A (b) Type 3-B

Figure A.3: Subsystems with adaptors of Type 3.

w(k) us(k) ur (k) z(k)
-1 -1 -1 . -1
t1 1
J\ >—(+ o>—@® []
—1 to _j to
,1_»
1 (k) T z(k+1) y2(k) y1(k) d—j z(k+1)
(a) Type 4-A (b) Type 4-B

Figure A.4: Subsystems with adaptors of Type 4.

2 Error analysis behind the Multiple Precision basic bricks

In Chapter 6 our analysis is based on multiple precision basic brick algorithms. One of the core
algorithms is the sum of the elements of a real vector with an a priori given bound on the
absolute error. Here we give the reader an idea of the error analysis behind this basic brick.
Let v contain n multiple precision floating-point numbers'. Denote by

n
s= Zvi
i=1

the sum that needs to be computed. Our goal is to compute and approximation accurate to &

bits, i.e. an s such that

S$=s+90,

where the overall absolute error |8] < 2* for a % given as the input to our algorithm. If necessary,
we will adapt the precision pgum of the result variable to satisfy the absolute error bound.

1If v contains Infinities or NaNs we return an error.

164

2. ERROR ANALYSIS BEHIND THE MULTIPLE PRECISION BASIC BRICKS

Denote by emax the maximum exponent of non-zero real entries in the vector v; such that
lv;| < 2°m . Hence, the overall sum is bounded in magnitude:

emax+ [logQ n—‘

)

Is|<n-2°mx <2

. [logz n-‘
sincen <2 .

€emaxt ’VIOgZ n-‘

Obviously, if the sum itself is strictly smaller than the error bound, i.e. 2 < 2F we do

not need to actually compute the sum and we can simply return zero.

Let
P =¢€max+ [logg n-‘ —-k+ [logQ n-‘ +5.
In our case, an addition performed on a p bit precision variable induces an absolute error

smaller than

emax+ [logz n—‘ 2k— [logQ nw -5

27P|s|<27P.2
o]
When performing n < 2{ *8"| additions on at least p bit precision variable §, we get

k_[l]_5
ls—§l<n-2 | 270 <ok5

In other words, the accumulated sum s satisfies
S=s+90,
with |6] < 2575,

If p > psum, We need to round s to some precision that is closest to the original precision psym,
while maintaining the overall error on the sum bounded by 2%.
If the exponent e of the accumulated sum §'is such that e < £ — 1, then

Is|=8+6 < 8] +|6] <2k 1 +2F5 <9k

and we can simply return zero and reset its precision to pgym-
Otherwise, when rounding s'to pgym bits we obtain

~

!/ -~ !/
§$'=5+0,

with 6’| < 27Psum |g] < 20 Psum,

If e— psum <k —1, we can just perform the rounding as then we have

~

§'=5+6'=s+6+6

165

APPENDIX A. APPENDIX

and

|s—8'| <161 +[6"| < 2F75 + 2¢7Psm < 2k =5 4 k=1 < gk

Otherwise, we round the sum to e — & + 1 bits, inducing an additional error §’ bounded in

magnitude by 2%~ but still maintaining the error bound 2%. This is the only case when the final

precision of the sum variable is not equal to the original precision psym of the sum variable.

3 Coefficients for the examples

In this section we give the coefficients of the filter algorithms that we used in some of our

examples.

3.1

Example from Chapter 6

In Part Ill Chapter 6 Example 6.1 (p. 84.) we used the following SISO state-space realization:

A=

3.2 Example from Chapter 7

5349797894891737 5166143083671405 —2831854438491313 —5871577021383539 —8085167575254235
58 53 54 57 59
5166143083671405 —2313123528371301 —3726321566242771 —2862105117188361 —5198006051035051
53 53 55 53 54
—2831854438491313 —3726321566242771 —6953517292263399 1536770956967001 —6533578784721267

54 55 53 52 57 ’
—5871577021383539 —2862105117188361 1536770956967001 —4578574112815079 —6108340260993661
957 9253 9258
—8085167575254235 —5198006051035051 —6533578784721267 —6108340260993661 —7406762621209713
9259 954 957 954 958
0
—5431455542039353 — [5441181515794623 8170739390909991
953 ¢ = 952 0 0 0 953 ’
b= —4330832538465309
’
—2702522316192301 _ —6210481900542423
9251 - 952 .
482362316509163
9249

In Part 1ll Chapter 7 Example 2 (p. 117) we used the following SISO state-space realization:

6784742786136467 744187655[214923729 76643859%7312541 764249638(&)32774909 233790857041007 722467396?20044821
255 2 2° 2 254 2

8837532051801285 6702326945697769 200758871190939 7765776886168563 —7064506506383 —1091547242537563
253 255 255 260 252 259

332163678765481 803109201555043 3430928543256835 —8814226732612787 —340600630723981 —51393263754677
256 257 954 253 256 953

—100378037454999 —3883122962210243 4407113891006265 6589648288527319 51463819022587 3975875009524179
254 259 252 255 253 259

23338099057403 1805668067704021 1360133999454637 1644151688384379 3482771051190523 —8782983518574175
254 260 258 258 254 253

—28250206934819 —4371435432060817 —205801181849963 —3980412056409463 8782803780831881 402384040765689
254 261 255 259 253 251

166

>

3. COEFFICIENTS FOR THE EXAMPLES

2805227146785663 —5609854620080605
—6781289?632910279 —16954462756016151
7151095652378232217 715096235751133851
b= —8644087?:68799361 ’ 4322098722;0663427
138530285667109 —8880554827970779
—670749912793553 —2679975639394807

954 256

3.3 Example from Chapter 8

_ 7582290898298045

, d Q74

In Part Ill Chapter 8 Example 2 (p. 139) we consider four realizations of a 9t order IIR filter.

Their coefficients have been subject to different optimizations specific to each structure.

Direct Form Il transposed This realization has the same coefficients as the transfer function

of the filter. Its numerator b and denumerator a are:

729237663 1
9253

410196191 —7785613688429543

249 250
410196177 6036692931392875

247 248
957124445 —5505973960157689

2417 247
1435686635 1626405210837387

b _ 247 _ 245
~ | 358921665 a= —645028755122265

245 944
1914248853 5492680950051031

248 248
3281569499 —7562215714147779

250 250
3281569473 3053779727680745

9252

2916950655 —2203903366092791

9255 954

p-operator Direct Form Il transposed

This realization has the same number of coefficients as the Direct Form Il transposed but uses

a modified delay operator. The corresponding Specialized Impli Form matrix Z is:

167

APPENDIX A. APPENDIX

-1

—1173742736577039

249

—598564716117403
948

—194752412061513
247

—44340287896553
246

—29194831792401
047

—13858087341545
948

—4562787932375
249

=3775617671781
252

—93342420817
251

1

168

5833901303
256

52505111727
255

52505111727
952

122511927363
951

367535782089
951

367535782089
250
122511927363
948

52505111727
247

52505111727
248

5833901303
047

0

691

Balanced state-space

This structure has its coefficients that are grouped into the matrix A, vectors b and ¢, and scalar d.

443339995223822815 —69710495220405359 —14914857(;1060567 183470515%5773231 —22799025654073995 264510033627687 7191913596252021 1553976526312143 3987612’47169973
2 2 2 2 2 2 2 2 2
2788419681621411 8511655240987669 —7241731896691307 923032429638883 —1185143818093905 91680166787919 29955451375187 24793696845359 1602266531167
254 253 255 255 255 953 253 255 954
—1491485751060201 7241731896691287 4014739506825505 3956246339911157 —847871350139453 975529378369809 132472831176299 57256913063569 1836516170261
2 255 952 254 254 255 254 255 253
—1834705105773195 923032429638873 —1978123169955585 3730471156627787 4008581949275589 —1822778074078241 —648692245116269 —32932900203945 —34163067919255
256
—9119610576295815 4740575272375661 —1695742g£0278867 —40085819‘;19275597 431207735727907 976897242794113 3142717255227975 365093342795161 185168624492341
2° 257 2 25 249 252 256 255 257
—1058040130510681 1466882668606681 —7804235026958069 —3645556148156227 —7815177942352969 797208406832299 —3640204017578879 —289129023623485 —1253582148190087
258 257 258 256 255 250 254 253 258
1150706228030895 —3834297776022405 8478261195284487 2594768980465645 785679313806937 910051004394703 366857616167601 —6305858738209341 —5362082746147945
260 260 260 957 254 252 249 255 958
—62159049249543 1586796598112755 —1832221218029465 —2107705613046249 —2920746742362679 —2313032188988843 6305858738208987 671630402948993 —1166805156754687
258 261 260 259 258 256 255 250 253
1993809236293 —410180231852571 58768517426727 136652271674025 1481348995953613 313395537050083 —1340520686534485 4667220627014373 4896276983317139
256 262 258 258 260 256 256 255 9253
—3423531969504719 —1711765984752477
255 254
3879265898276791 —3879265898276791
254 254
—626127473878301 —2504509895513203
951 953
—8465367200971921 2116341800242985
255 253
b = | —4828329411714067 —301770588232129 d = | 5833901303
255 251 256
—1966428315469671 983214157734825
255 254
4709145555509341 588643194438675
258 255
—3976213184483417 248513324030127
260 256
512167188113989 8194675009308959
260 264
Lattice Wave Digital Filter Coefficients y of the Lattice Wave Digital filter:
—2788140310368283 —292219541455085 —480744335378591 —73054885139031 —1044203411065085 —584439080672053 —4499984971038737 —584439081644825 —338912398222379
253 252 250 250 253 253 253 253 250

|

S3TdINVXE 3HL HO4 SIN3IOI44300 '€

APPENDIX A. APPENDIX

4 Off-by-One problem

In Part Ill Chapter 7 Section 7.8 we present our ongoing work on the off-by-one problem. The
solution is based on an optimization problem. In this Section we give details of the formal
construction of this optimization problem.

As we said in Section 7.8.1, we are looking for x,y,6,,6, such that

(A B)\(x E) (5x)
<|_|+ (A.1)
C D|\u y Oy
(A B)\(x E) (6x)
= |+ (A.2)
C D)\u y oy
(1 0\ (x a—c)
<" (A.3)
0 I\u u
(I 0\ [x g)
> (A.4)
0 I)\u u

To formalize the optimization problem, we need to bring the above inequalities to the canonical
form, i.e. bring all inequalities to the direction “<”:

Denote x:=x+x’ and u:=u +u'. Then,

RN DR e
g [e M| Y B
o 3+ lo 2)2=(2)
(_01 —()I)(z)_(g : is_(;) (A8

170

4. OFF-BY-ONE PROBLEM

By gathering x’,u’ and 8,8, on the left sides of each inequality, we obtain
A B)(x I 0)[0, x A B)\|x
|- - (A.9)
C D|\u| \0 oy y] \C D|\u
~A -B\[«'\ (I 5.\ (A B)\(x\ (=
—|-_ (A.10)
-C -D|\u é C D|\u) \y

0

IA

S 0~

IA

I~y
NS

+

I 0)(x x I 0\(x
<|_|- - (A.11)
0 I)\u ul] \0 I/\u
I 0)(x I 0)\(x x
< == (A12)
0 -I/\e/)] \0 IJ\u) \u
xl
ul
By gathering vectors x’,u’ and 6,8, into one vector & = sl and the left parts of
X
Oy

(A.9)-(A.12) into one matrix, we obtain the optimization problem presented in Section 7.8.1.

171

BIBLIOGRAPHY

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

R. Rocher, D. Ménard, N. Hervé, and O. Sentieys, “Fixed-point configurable hardware
components,” EURASIP Signal of Embedded Systems, no. 1, Jan 2006.

D. Menard, R. Rocher, O. Sentieys, N. Simon, L.-S. Didier, T. Hilaire, B. Lopez,
E. Goubault, S. Putot, F. Vedrine, A. Najahi, G. Revy, L. Fangain, C. Samoyeau,
F. Lemonnier, and C. Clienti, “Design of Fixed-point Embedded Systems (DEFIS),” in
2012 Conference on Design and Architectures for Signal and Image Processing
(DASIP). ECSI - European Electronic Chips and Systems design Initiative, 2012, pp.
365—-366.

G. Constantinides, P. Y. K. Cheung, and W. Luk, Synthesis and Optimization of DSP
Algorithms. Springer US, 2007.

T. Hilaire, “Analyse et synthése de I'implémentation de lois de contrle-commande en
précision finie (Etude dans le cadre des applications automobiles sur calculateur
embarquée),” Ph.D. dissertation, Université de Nantes, Jun 2006.

——, “Towards Tools and Methodology for the Fixed-Point Implementation of Linear
Filters,” in Digital Signal Processing Workshop and IEEE Signal Processing Education
Workshop (DSP/SPE), 2011 IEEE, Jan 2011, pp. 488—493.

B. Lopez, “Implémentation optimale de filtres linéaires en arithmétique virgule fixe,” Ph.D.
dissertation, UPMC, 2015.

A. Volkova and T. Hilaire, “Fixed-point implementation of lattice wave digital filter:
Comparison and error analysis,” in 2015 23rd European Signal Processing
Conference (EUSIPCQO), Aug 2015, pp. 1118-1122.

A. Volkova, C. Lauter, and T. Hilaire, “Computing the worst-case peak gain of digital filter
in interval arithmetic.” in 17th International Symposium on Scientific Computing,
Computer Arithmetics and Verified Numerics (SCAN), Sep 2016, abstract.

173

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

(18]

[16]

[17]

(18]

[19]

[20]

A. Volkova, T. Hilaire, and C. Lauter, “Reliable verification of digital implemented filters
against frequency specifications,” in 2017 IEEE 24th Symposium on Computer
Arithmetic, July 2017.

V. Balakrishnan and S. Boyd, “On Computing the Worst-Case Peak Gain of Linear
Systems,” Systems & Control Letters, vol. 19, pp. 265-269, 1992.

A. Volkova, T. Hilaire, and C. Lauter, “Reliable evaluation of the worst-case peak gain
matrix in multiple precision,” in 2015 IEEE 22nd Symposium on Computer Arithmetic,
June 2015, pp. 96—103.

T. Hilaire, A. Volkova, and M. Ravoson, “Reliable fixed-point implementation of linear
data-flows,” in 2016 IEEE International Workshop on Signal Processing Systems
(SiPS), Oct 2016, pp. 92-97.

A. Volkova, T. Hilaire, and C. Lauter, “Determining fixed-point formats for a digital filter
implementation using the worst-case peak gain measure,” in 2015 49th Asilomar
Conference on Signals, Systems and Computers, Nov 2015, pp. 737-741.

A. Volkova, C. Lauter, and T. Hilaire, “Rigorous determination of recursive filter fixed-point
implementation with input signal frequency specifications,” in 2017 51st Asilomar
Conference on Signals, Systems and Computers, Sep 2017, abstract accepted.

F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths with FloPoCo,”
IEEE Design & Test of Computers, vol. 28, no. 4, pp. 18-27, Jul. 2011.

F. de Dinechin, T. Hilaire, M. Istoan, and A. Volkova, “Hardware IIR Filters: Direct Form |
Computing Just Right,” Jul. 2017, technical report available online
http://hal.upmc.fr/hal-01561052.

F. Qureshi, A. Volkova, J. Takala, and T. Hilaire, “Multiplierless Unified Architecture for
Mixed Radix-2/3/4 FFTs,” in 2017 25th European Signal Processing Conference
(EUSIPCO), Aug 2017.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. NJ, USA:
Prentice Hall Press, 2009.

P. Prandoni and M. Vetterli, Signal Processing for Communications. EFPL Press, 2008.

R. N. Bracewell, The Fourier Transform and lts Applications (3rd ed.). Boston:
McGraw-Hill, 2000.

174

BIBLIOGRAPHY

[21]
(22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

[30]
[31]

(32]

(33]

[34]

E. I. Jury, Theory and Application of the Z-Transform Method. Krieger Pub Co, 1973.
W. Chen, The Circuits and Filters Handbook, Second Edition. Taylor & Francis, 2002.

E. Eitelberg, “Convolution invariance and corrected impulse invariance,” Signal
Processing, vol. 86, no. 5, pp. 1116—1120, 2006.

I. W. Selesnick, M. Lang, and C. S. Burrus, “Magnitude squared design of recursive filters
with the Chebyshev norm using a constrained rational Remez algorithm,” in
Proceedings of IEEE 6th Digital Signal Processing Workshop, Oct 1994.

S.-1. Filip, “Robust tools for weighted Chebyshev approximation and applications to digital
filter design,” Ph.D. dissertation, Université de Lyon, Dec 2016.

M. Lankarany and H. Marvi, “Noise reduction in digital iir filters by finding optimum
arrangement of second-order sections,” in 2008 Canadian Conference on Electrical
and Computer Engineering, May 2008, pp. 689-692.

C.-W. Wu and P. Cappello, “Computer-aided design of vilsi second-order sections,” in
ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 12, Apr 1987, pp. 1907-1910.

H. Butterweck, A. van Meer, and G. Verkroost, “New second-order digital filter sections
without limit cycles,” IEEE Transactions on Circuits and Systems, vol. 31, no. 2, pp.
141-146, Feb 1984.

C. Tsai, “Floating-point roundoff noises of first- and second-order sections in parallel form
digital filters,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 44, no. 9, pp. 774—779, Sep 1997.

N. Bose, Multidimensional Systems: Theory and Applications. |EEE Press., 1979.
T. Kailath, Linear Systems. Prentice-Hall, 1980.

J. O. S. 1ll, “Introduction to digital audio signal processing,” Lectures at Stanford
University, California, USA, 2016, .

S. Denis, Matrices. Theory and Applications. Second edition, 1971.

M. Gevers and G. Li, Parametrizations in Control, Estimations and Filtering Problems:
Accuracy Aspects. Berlin: Springer-Verlag, 1993.

175

BIBLIOGRAPHY

[35] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefevre, G. Melquiond,
N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-Point Arithmetic.
Birkh&user Boston, 2010.

[36] J.von Newmann, “First Draft of a Report on the EDVAC,” Tech. Rep., 1945.

[37] W. Padgett and D. Anderson, Fixed-Point Signal Processing, ser. Synthesis lectures on
signal processing. Morgan & Claypool, 2009.

[38] T. Finley, “Two’s Complement,” Cornell University lecture notes, 2000.

[39] T. Hilaire and B. Lopez, “Reliable Implementation of Linear Filters with Fixed-Point
Arithmetic,” in Proc. IEEE Workshop on Signal Processing Systems (SiPS), 2013.

[40] R. Oshana, DSP Software Development Techniques for Embedded and Real-Time
Systems. Elsevier Science, 2006.

[41] B. Lopez, T. Hilaire, and L.-S. Didier, “Sum-of-products evaluation schemes with
fixed-point arithmetic, and their application to IR filter implementation,” in Conf. on
Design and Architectures for Signal and Image Proc. (DASIP), Oct 2012.

[42] F. de Dinechin, M. Istoan, and A. Massouri, “Sum-of-product architectures computing just
right,” in IEEE 25th International Conference on Application-Specific Systems,
Architectures and Processors, ASAP 2014, Zurich, Switzerland, June 18-20, 2014,
2014, pp. 41-47.

[43] C. Weinstein and A. V. Oppenheim, “A comparison of roundoff noise in floating point and
fixed point digital filter realizations,” Proceedings of the IEEE, vol. 57, no. 6, pp.
1181-1183, June 1969.

[44] R. Boite, H. Xian-Liang, and J. P. Renard, “A comparison of fixed-point and floating-point
realization of digital filter,” in 8th European Conference on Electrotechnics,
Conference Proceedings on Area Communication, Jun 1988, pp. 142—145.

[45] “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Std 754-1985, 1985.
[46] N.J. Higham, Accuracy and stability of numerical algorithms (2 ed.). SIAM, 2002.

[47] B. Widrow and I. Kollar, Quantization Noise: Roundoff Error in Digital Computation, Signal
Processing, Control, and Communications. Cambridge University Press, 2008.

176

BIBLIOGRAPHY

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

D. Goldberg, “What every computer scientist should know about floating-point arithmetic,”
ACM Comput. Surv., vol. 23, no. 1, pp. 5—48, 1991.

S. Cheuvillard, J. Harrison, M. Joldes, and C. Lauter, “Efficient and accurate computation
of upper bounds of approximation errors,” Theoretical Computer Science, vol. 412,
no. 16, pp. 1523—1543, 2011.

C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gallet, N. Gast, C. Lauter, and J.-M.
Muller, “CR-LIBM A library of correctly rounded elementary functions in
double-precision,” research report available online
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804, Dec. 2006.

N. Brisebarre, G. Hanrot, and O. Robert, “Exponential sums and correctly-rounded
functions,” IEEE Transactions on Computers, vol. PP, no. 99, pp. 1-1, 2017.

F. de Dinechin, C. Lauter, and J.-M. Muller, “Fast and correctly rounded logarithms in
double-precision,” RAIRO - Theoretical Informatics and Applications, vol. 41, no. 1, pp.
85—-102, April 2007.

C. Q. Lauter, “Arrondi correct de fonctions mathématiques : fonctions univariées et
bivariées, certification et automatisation,” Ph.D. dissertation, ENS de Lyon, 2008.

S. Cheuvillard, C. Lauter, and M. Joldes, Users’ manual for the Sollya tool, Release 6.0,
LIP, LIP6, LORIA, CNRS, APICS, INRIA.

N. Brunie, F. de Dinechin, O. Kupriianova, and C. Q. Lauter, “Code generators for
mathematical functions,” in 22nd IEEE Symposium on Computer Arithmetic, ARITH
2015, Lyon, France, June 22-24, 2015, 2015, pp. 66—73.

U. Kulisch and V. Snyder, “The Exact Dot Product As Basic Tool for Long Interval
Arithmetic,” Computing, vol. 91, no. 3, pp. 307-313, Mar 2011.

M. Joldes, O. Marty, J. M. Muller, and V. Popescu, “Arithmetic algorithms for extended
precision using floating-point expansions,” IEEE Transactions on Computers, vol. 65,
no. 4, pp. 1197-1210, April 2016.

D. A. Pope and M. L. Stein, “Multiple precision arithmetic,” Commun. ACM, vol. 3, no. 12,
pp. 652—654, Dec. 1960.

L. Fousse, G. Hanrot, V. Lefévre, P. Pélissier, and P. Zimmermann, “MPFR: A
multiple-precision binary floating-point library with correct rounding,” ACM
Transactions on Mathematical Software, vol. 33, no. 2, Jun. 2007.

177

BIBLIOGRAPHY

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis. SIAM,
2009.

T. Hickey, Q. Ju, and M. H. Van Emden, “Interval arithmetic: From principles to
implementation,” J. ACM, vol. 48, no. 5, pp. 1038—1068, Sep. 2001.

H. Dawood, Theories of Interval Arithmetic.

A. Neumaier, Interval methods for systems of equations. Cambridge University Press,
Cambridge, UK, 1990.

G. Melquiond, “De I'arithmétique d’intervalles a la certification de programmes,” Ph.D.
dissertation, ENS Lyon, 2006.

N. Revol and F. Rouillier, “Motivations for an arbitrary precision interval arithmetic and the
MPFI library,” Reliable Computing, vol. 11, no. 4, pp. 275-290, 2005.

——, Manual for MPFI 1.5.1, Spaces, INRIA Lorraine, Arenaire, INRIA Rhone-Alpes, Lab.
ANO, USTL (Univ. of Lille).

S. M. Rump, “Guaranteed inclusions for the complex generalized eigenproblem,”
Computing, vol. 42, no. 2-3, pp. 225—-238, 1989.

——, “Reliability in Computing: The Role of Interval Methods in Scientific Computing,”
R. E. Moore, Ed. Academic Press, 1988, ch. Algorithms for Verified Inclusions —
Theory and Practice, pp. 109—126.

——, “Solution of Linear Systems with Verified Accuracy,” Applied numerical
mathematics, vol. 3, no. 3, pp. 233—-241, 1987.

J. Kauraniemi, T. I. Laakso, I. Hartimo, and S. J. Ovaska, “Delta operator realizations of
direct-form iir filters,” IEEE Transactions on Circuits and Systems Il: Analog and
Digital Signal Processing, vol. 45, no. 1, pp. 41-52, Jan 1998.

N. Wong and T.-S. Ng, “A generalized direct-form delta operator-based iir filter with
minimum noise gain and sensitivity,” IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 48, no. 4, pp. 425—431, Apr 2001.

N. V. Dakev, J. F. Whidborne, and A. J. Chipperfield, “ #,, design of an EMS control
system for a maglev vehicle using evolutionary algorithms,” in Proc. GALESIA 95,
Sheffield U.K., Sep 1995, pp. 226—231.

178

BIBLIOGRAPHY

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

J. F. Whidborne, I. Postlethwaite, and D.-W. Gu, “Robust Controller Design Using #
Loop-Shaping and the Method of Inequalities,” San Antonio, Texas, Dec 1993, pp.
2163-2168.

S. Chen and J. Wu, “The Determination of Optimal Finite-precision Controller Realisations
Using a Global Optimisation Strategy: a Pole-sensitivity Approach,” in Digital
Controller Implementation and Fragility: A Modern Perspective, R. S. H. Istepanian
and J. F. Whidborne, Eds. London, UK: Springer-Verlag, 2001, ch. 6, pp. 87—104.

V. Tavsanoglu and L. Thiele, “Optimal design of state - space digital filters by
simultaneous minimization of sensitivity and roundoff noise,” IEEE Transactions on
Circuits and Systems, vol. 31, no. 10, pp. 884-888, Oct 1984.

T. Hinamoto, S. Yokoyama, T. Inoue, W. Zeng, and W. Lu, “Analysis and Minimization of
L, -Sensitivity for Linear Systems and Two-Dimensional State-Space Filters Using
General Controllability and Observability Gramians,” in IEEE Transactions on Circuits
and Systems, Fundamental Theory and Applications, vol. 49, no. 9, Sep 2002.

B. Widrow and I. Kollar, Quantization Noise: Roundoff Error in Digital Computation, Signal
Processing, Control, and Communications. Cambridge, UK: Cambridge University
Press, 2008.

G. A. Constantinides, “Perturbation analysis for word-length optimization,” in 17th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, 2003.
FCCM 2003., April 2003, pp. 81-90.

G. Constantinides, P. Cheung, and W. Luk, “Truncation Noise in Fixed-Point SFGs,” IEE
Electronics Letters, vol. 35, no. 23, pp. 2012—-2014, Nov 1999.

D. Bdez-Lépez, D. Baez-Villegas, R. Alcantara, J. J. Romero, and T. Escalante, “Package
for filter design based on MATLAB,” Comp. Applic. in Engineering Education, vol. 9,
no. 4, pp. 259-264, 2001.

L. Jackson, J. Kaiser, and H. McDonald, “An approach to the implementation of digital
filters,” IEEE Transactions on Audio and Electroacoustics, vol. 16, no. 3, pp. 413-421,
Sep 1968.

A. Kirecci, M. Topalbekiroglu, and I. Eker, “Experimental evaluation of a model reference
adaptive control for a hydraulic robot: a case study,” Robotica, vol. 21, no. 1, pp.
71-78, 2003.

179

BIBLIOGRAPHY

[83] L.D. Coster, M. Adé, R. Lauwereins, and J. A. Peperstraete, “Code generation for
compiled bit-true simulation of DSP applications,” in Proceedings of the 11th
International Symposium on System Synthesis, ISSS '98, Hsinchu, Taiwan, Dec 1998,
pp. 9-14.

[84] A. Benedetti and P. Perona, “Bit-width optimization for configurable dsp’s by multi-interval
analysis,” in Conference Record of the Thirty-Fourth Asilomar Conference on Signals,
Systems and Computers, vol. 1, Oct 2000, pp. 355-359 vol.1.

[85] C. Carreras, J. A. Lopez, and O. Nieto-Taladriz, “Bit-width selection for data-path
implementations,” in Proceedings 12th International Symposium on System
Synthesis, Nov 1999, pp. 114—-119.

[86] J. A. Lopez, C. Carreras, and O. Nieto-Taladriz, “Improved interval-based characterization
of fixed-point LTI systems with feedback loops,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 26, no. 11, pp. 1923—1933, 2007.

[87] J. Cong, K. Gururaj, B. Liu, C. Liu, Z. Zhang, S. Zhou, and Y. Zou, “Evaluation of static
analysis techniques for fixed-point precision optimization,” in 17th IEEE Symposium
on Field Programmable Custom Computing Machines In Proceedings, 2009, pp.
231-234.

[88] C. F. Fang, R. A. Rutenbar, M. Puschel, and T. Chen, “Toward efficient static analysis of
finite-precision effects in dsp applications via affine arithmetic modeling,” in
Proceedings 2003. Design Automation Conference, June 2003, pp. 496-501.

[89] L. H.de Figueiredo and J. Stolfi, “Affine arithmetic: Concepts and applications,”
Numerical Algorithms, vol. 37, no. 1-4, pp. 147—158, 2004.

[90] D. Menard, R. Rocher, and O. Sentieys, “Analytical fixed-point accuracy evaluation in
linear time-invariant systems,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 55, no. 10, pp. 3197-3208, Nov 2008.

[91] N. Herve, D. Menard, and O. Sentieys, “Data wordlength optimization for FPGA synthesis,”
in IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.,
Nov 2005, pp. 623-628.

[92] E. Parzen, “On estimation of a probability density function and mode,” The Annals of
Mathematical Statistics, vol. 33, no. 3, pp. 1065-1076, 1962.

180

BIBLIOGRAPHY

[93] A. Banciu, “A Stochastic Approach For The Range Evaluation,” Theses, Université
Rennes 1, Feb. 2012.

[94] T. Hilaire, P. Chevrel, and J.-P. Clauzel, “Low Parametric Sensitivity Realization Design for
FWL Implementation of MIMO Controllers,” in Proc. of Control Applications of
Optimisation CAO’O6, Apr 2006.

[95] T. Hilaire, D. Ménard, and O. Sentieys, “Roundoff Noise Analysis of Finite Wordlength
Realizations with the Implicit State-Space Framework,” in EUSIPCO’07, 2007, pp.
1019-1023.

[96] T. Hilaire, P. Chevrel, and J.-P. Clauzel, “Pole Sensitivity Stability Related Measure of FWL
Realization with the Implicit State-Space Formalism,” in 5th IFAC Symposium on
Robust Control Design (ROCOND’06), Jul 2006.

[97] T. Hilaire, FWR Toolbox User’s Guide (v0.99), http://fwrtoolbox.gforge.inria.fr/, 2009.

[98] T. Hilaire, P. Chevrel, and J.-P. Clauzel, “Low Parametric Sensitivity Realization Design for
FWL Implementation of MIMO Controllers : Theory and Application to the Active
Control of Vehicle Longitudinal Oscillations,” International Journal of Tomography &
Statistics, vol. 6, no. 7, pp. 128—133, 2007.

[99] A. Fettweiss, “Wave Digital Filters: Theory and Practice,” Proc. of the IEEE, vol. 74, no. 2,
1986.

[100] J. Yli-Kaakinen and T. Saramaki, “An algorithm for the design of multiplierless
approximately linear-phase lattice-wave digital filters,” in 2000 IEEE International
Symposium on Circuits and Systems In Proceedings, vol. 2, 2000, pp. 77-80 vol.2.

[101] L. Gazsi, “Explicit formulas for lattice wave digital filters,” IEEE Trans. Circuits & Systems,
vol. 32, no. 1, 1985.

[102] B. Friedlander, “Lattice filters for adaptive processing,” Proceedings of the IEEE, vol. 70,
no. 8, pp. 829-867, Aug 1982.

[103] H. Johansson and L. Wanharomar, “Digital Hilbert transformers composed of identical
allpass subfilters,” in ISCAS 1998. Proceedings of, vol. 5, pp. 437—-440 vol.5.

[104] A. Fettweis, H. Levin and A. Sedimeyer “Wave digital lattice filters,” International Journal
on Circuit Theory and Applications, vol. 2, pp. 203—211, Jun 1974.

[105] H. Johansson and L. Wanharomar, “Design of linear-phase Lattice Wave Digital Filters.”

181

BIBLIOGRAPHY

[106] T.S. J. Yli-Kaakinen, “A systematic algorithm for the design of multiplierless lattice wave
digital filters,” in First International Symposium on Control, Communications and
Signal Processing, 2004, pp. 393-396.

[107] H. Ohlsson, O. Gustafsson, W. Li, and L. Wanhammar, “An environment for design and
implementation of energy efficient digital filters,” in Swedish System-on-Chip
Conference, Apr 2003.

[108] J. Yli-Kaakinen and T. Saraméki, “A Systematic Algorithm for the Design of Lattice Wave
Digital Filters With Short-Coefficient Wordlength,” IEEE Trans. on Circuits & Systems,
2007.

[109] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction To Algorithms.
MIT Press, 2001.

[110] J. Kuriakose, S. Ristic, and G. de Cremoux, “An automated toolbox for the design and
analysis of lattice wave digital filters using matlab,” in IEE Colloquium on DSP enabled
Radio, Sep 2003, pp. 1-8.

[111] J. C. Vold, Havard and G. T. Rocklin., “New ways of estimating frequency response
functions.” Sound and Vibration, vol. 18, pp. 34—-38, Nov 1984.

[112] S. Pillai and T. Shim, Spectrum estimation and system identification. Springer-Verlag,
1993.

[113] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools for Python,”
2001, http://www.scipy.org/.

[114] S. Boyd and J. Doyle, “Comparison of peak and RMS gains for discrete-time systems,”
System & Control Letters, vol. 9, pp. 1-6, 1987.

[115] F. Johansson et al., mpmath: a Python library for arbitrary-precision floating-point
arithmetic (version 0.18), December 2013, http://mpmath.org/.

[116] J. Carletta, R. Veillette, F. Krach, and Z. F., “Determining appropriate precisions for
signals in fixed-point IIR filters,” in Design Automation Conference, 2003.
Proceedings, 2003, pp. 656—661.

[117] R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX + XB = C,” Commun.
ACM, vol. 15, no. 9, pp. 820-826, Sep. 1972.

182

BIBLIOGRAPHY

[118] V. Simoncini, “Computational methods for linear matrix equations,” SIAM Review, vol. 58,
no. 3, pp. 377-441, 2016.

[119] S. Hammarling, “Numerical solution of the discrete-time, convergent, non-negative
definite lyapunov equation,” Syst. Control Lett., vol. 17, no. 2, pp. 137-139, Aug. 1991.

[120] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With Formulas,
Graphs, and Mathematical Tables. Dover Publications, 1964.

[121] H. Dawood, Theories of Interval Arithmetic: Mathematical Foundations and Applications.
LAP Lambert Academic Publishing, 2011.

[122] S. M. Rump, “New Results on Verified Inclusions,” in Accurate Scientific Computations,
Symposium, 1985, Proceedings, 1985, pp. 31-69.

[123] S. Gershgorin, “Uber die Abgrenzung der Eigenwerte einer Matrix.” Bull. Acad. Sci.
URSS, vol. 1931, no. 6, pp. 749-754, 1931.

[124] L. Fousse, G. Hanrot, V. Lefévre, P. Pélissier, and P. Zimmermann, “ MPFR : A
Multiple-Precision Binary Floating-Point Library with Correct Rounding,” ACM
Transactions on Mathematical Software, vol. 33, no. 2, pp. 13:1—13:15, 2007.

[125] V. Pan and J. Reif, “Efficient Parallel Solution of Linear Systems,” in Proceedings of the
Seventeenth Annual ACM Symposium on Theory of Computing. ACM, 1985, pp.
143-152.

[126] D. Lefebvre, P. Chevrel, and S. Richard, “An #,, based control design methodology
dedicated to the active control of longitudinal oscillations,” IEEE Trans. on Control
Systems Tec hnology, vol. 11, no. 6, pp. 948—-956, 2003.

[127] Z. Zhao and G. Li, “Roundoff noise analysis of two efficient digital filter structures,” IEEE
Trans. on Signal Processing, vol. 54, no. 2, pp. 790-795, 2006.

[128] K. Astrom and R. Murray, Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, 2010.

[129] A. Neumaier, Interval Methods for Systems of Equations. Cambridge, UK: Cambridge
University Press, 1990, vol. 37.

[130] —, “A distributive interval arithmetic,” Freiburger Intervall-Berichte, vol. 10, no. 82, pp.
31-38, 1982.

183

BIBLIOGRAPHY

[131] S. J. Xu and A. Rachid, “Generalized Gerschgorin disc and stability analysis of dynamic
interval systems,” in Control '96, UKACC International Conference on, vol. 1, Sept
1996, pp. 276—280 vol.1.

[182] S. Corsaro and M. Marino, “Interval linear systems: the state of the art,” Computational
Statistics, vol. 21, no. 2, pp. 365-384, Jun 2006.

[133] A. Neumaier, “New techniques for the analysis of linear interval equations,” Linear
Algebra and its Applications, vol. 58, pp. 273 — 325, 1984.

[134] J. Rohn, “Inverse interval matrix,” SIAM Journal on Numerical Analysis, vol. 30, no. 3, pp.
864-870, 1993.

[135] V. Kreinovich, “Solving equations (and systems of equations) under uncertainty: how
different practical problems lead to different mathematical and computational
formulations,” Granular Computing, vol. 1, no. 3, pp. 171-179, Sep 2016.

[136] E. R. Hansen, “Bounding the solution of interval linear equations,” SIAM Journal on
Numerical Analysis, vol. 29, no. 5, pp. 1493—-1503, 1992.

[187] M. Christensen and F. J. Taylor, “Fixed-Point IIR filter challenges,” EDN Networks, vol. 51,
no. 23, 2006.

[138] B. Lopez, T. Hilaire, and L.-S. Didier, “ Formatting bits to better implement signal
processing algorithms,” in 4th Int. conf. PECCS , proceedings of, 2014.

[139] L. Tsoeunyane, S. Winberg, and M. Inggs, “Software-defined radio FPGA cores: Building
towards a domain-specific language,” International Journal of Reconfigurable
Computing, Apr 2017.

[140] A. Ziv, “Fast evaluation of elementary mathematical functions with correctly rounded last
bit, ACM Trans. Math. Softw., vol. 17, no. 3, pp. 410-423, Sep. 1991.

[141] L. Hogben, Handbook of Linear Algebra. CRC Press, 2006.

[142] I. Zelinka, V. Snasel, and A. Abraham, Handbook of Optimization: From Classical to
Modern Approach. Springer Berlin Heidelberg, 2012.

[143] G. Cornuejols, “Valid inequalities for mixed integer linear programs.” Mathematical
Programming B,, vol. 112, pp. 3—44, apr 2008.

184

BIBLIOGRAPHY

[144] D. E. S. William Cook, Thorsten Koch and K. Wolter, “A hybrid branch-and-bound
approach for exact rational mixed-integer programming,” Konrad-Zuse-Zentrum fur
Informationstechnik Berlin, Tech. Rep., 2012.

[145] W. J. Cook, T. Koch, D. E. Steffy, and K. Wolter, “An exact rational mixed-integer
programming solver,” in Integer Programming and Combinatoral Optimization - 15th
International Conference, IPCO 2011, New York, NY, USA, June 15-17, 2011.
Proceedings, 2011, pp. 104—-116.

[146] D. E. Steffy and K. Wolter, “Valid linear programming bounds for exact mixed-integer
programming,” INFORMS Journal on Computing, vol. 25, no. 2, pp. 271-284, 2013.

[147] M. Hamza and M. Rasmy, “A simple method for determining the reachable set for linear
discrete systems,” IEEE Transactions on Automatic Control, vol. 16, no. 3, pp.
281-282, June 1971.

[148] B. Xue, Z. She, and A. Easwaran, “Under-approximating backward reachable sets by
semialgebraic sets,” IEEE Transactions on Automatic Control, vol. PP, no. 99, pp. 1-1,
2017.

[149] D. P. Bertsekas and I. B. Rhodes, “On the minimax reachability of target sets and target
tubes,” Automatica, vol. 7, no. 2, pp. 233-247, Mar. 1971.

[150] A. Barvinok, Integer Points in Polyhedra. European Mathematical Society, 2008.

[151] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfiability Modulo Theories,” in
Handbook of Satisfiability. 10S Press, Feb 2009, vol. 185, ch. 26, pp. 825-885.

[152] T. W. Parks and J. H. McClellan, “Chebyshev Approximation for Nonrecursive Digital
Filters with Linear Phase,” IEEE Transactions on Circuit Theory, vol. 19, no. 2, pp.
189-194, Mar 1972.

[153] S.-I. Filip, “A Robust and Scalable Implementation of the Parks-McClellan Algorithm for
Designing FIR Filters,” ACM Trans. Math. Softw., vol. 43, no. 1, pp. 7:1—-7:24, Aug
2016.

[154] B. W. Char, K. O. Geddes, and G. H. Gonnet, “GCDHEU: Heuristic polynomial GCD
algorithm based on integer GCD computation,” Journal of Symbolic Computation,
vol. 7, no. 1, pp. 3148, 1989.

185

BIBLIOGRAPHY

[155] M.-F. Roy, Basic algorithms in real algebraic geometry and their complexity: from Sturm’s
theorem to the existential theory of reals. de Gruyter, 1996, vol. 23.

[156] G. Liand Z. Zhao, “On the Generalized DFIIt Structure and its State-Space Realization in
Digital Filter Implementation,” IEEE Trans. on Circuits and Systems, vol. 51, no. 4, pp.
769-778, Apr 2004.

[157] M. Gevers and G. Li, Parametrizations in Control, Estimation and Filtering Probems.
Springer-Verlag, 1993.

[158] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach.
Elsevier Science, 2011.

[159] K. D. Chapman, “Fast integer multipliers fit in FPGAs (EDN 1993 design idea winner),”
EDN magazine, no. 10, p. 80, May 1993.

[160] M. J. Wirthlin, “Constant Coefficient Multiplication Using Look-Up Tables,” Journal of VLSI
Signal Processing, vol. 36, no. 1, pp. 7-15, 2004.

[161] F. de Dinechin, H. Takeugming, and J.-M. Tanguy, “A 128-Tap Complex FIR Filter
Processing 20 Giga-Samples/s in a Single FPGA " in 44th Asilomar Conference on
Signals, Systems & Computers, 2010.

[162] N. Brunie, F. de Dinechin, M. Istoan, G. Sergent, K. lllyes, and B. Popa, “Arithmetic core
generation using bit heaps,” in Field-Programmable Logic and Applications, Sep 2013.

[163] IEEE Std 802.15.4-2006, /IEEE Standard for Information technology—
Telecommunications and information exchange between systems— Local and
metropolitan area networks— Specific requirements— Part 15.4: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (WPANS).

[164] The MathWorks, Inc., “Matlab signal processing toolbox.”

[165] F. de Dinechin, M. Istoan, and A. Massouri, “Sum-of-product architectures computing just
right,” in 2014 IEEE 25th International Conference on Application-Specific Systems,
Architectures and Processors, June 2014, pp. 41-47.

[166] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2003.

186

BIBLIOGRAPHY

[167] H. Parendeh-Afshar, A. Neogy, P. Brisk, and P. lenne, “Compressor Tree Synthesis on
Commercial High-Performance FPGAs,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 4, no. 4, 2011.

[168] R. Kumar, A. Mandal, and S. P. Khatri, “An efficient arithmetic Sum-of-Product (SOP)
based multiplication approach for FIR filters and DFT,” in International Conference on
Computer Design (ICCD). 1EEE, Sep 2012, pp. 195-200.

[169] T. Parks and J. McClellan, “Chebyshev approximation for nonrecursive digital filters with
linear phase,” IEEE Transactions on Circuit Theory, vol. 19, no. 2, pp. 189—194, March
1972.

[170] S. Torres, “Tools for the Design of Reliable and Efficient Functions Evaluation Libraries,”
Theses, Université de Lyon, Sep. 2016.

[171] S. Filip, “A robust and scalable implementation of the parks-mcclellan algorithm for
designing FIR filters,” ACM Trans. Math. Softw., vol. 43, no. 1, pp. 7:1-7:24, 2016.

187

Towards reliable implementation of digital filters

Abstract: In this thesis we develop approaches for improvement of the numerical behavior of
digital filters with focus on the impact of accuracy of the computations. This work is done in the
context of a reliable hardware/software code generator for Linear Time-Invariant (LTI) digital filters,
in particular with Infinite Impulse Response (IIR). With this work we consider problems related to
the implementation of LTI filters in Fixed-Point arithmetic while taking into account finite precision
of the computations necessary for the transformation from filter to code. This point is important
in the context of filters used in embedded critical systems such as autonomous vehicles. We pro-
vide a new methodology for the error analysis when linear filter algorithms are investigated from
a computer arithmetic aspect. In the heart of this methodology lies the reliable evaluation of the
Worst-Case Peak Gain measure of a filter, which is the |1 norm of its impulse response. The pro-
posed error analysis is based on a combination of techniques such as rigorous Floating-Point error
analysis, interval arithmetic and multiple precision implementations. This thesis also investigates
the problematic of compromise between hardware cost (e.g. area) and the precision of compu-
tations during the implementation on FPGA. We provide basic brick algorithms for an automatic
solution of this problem. Finally, we integrate our approaches into an open-source unifying frame-
work to enable automatic and reliable implementation of any LTI digital filter algorithm.

Keywords: computer arithmetic; rigorous and reliable algorithms; error analysis; code generator;
Fixed-Point, Floating-Point, Interval and Multiple Precision arithmetics; linear digital filters.

Algorithmique de I'implémentation fiable de filtres numériques

Résumé : Dans cette thése nous essayons d’améliorer I'évaluation des filtres numériques en
nous concentrant sur la précision de calcul nécessaire. Ce travail est réalisé dans le contexte
d’'un générateur de code matériel/logiciel fiable pour des filtres numériques linéaires, en parti-
culier les filtres a Réponse Impulsionnelle Infinie (IIR). Dans ce travail, nous mettons en avant
les problemes liés a l'implémentation de filtres linéaires en arithmétique Virgule Fixe, tout en
prenant en compte la précision finie des calculs nécessaires a la transformation des filtres vers
du code. Ce point est important dans le cadre de filtres utilisés dans des systémes embarqués
critiques comme les véhicules autonomes, I'aéronautique, etc. Nous fournissons une nouvelle
méthodologie pour I'analyse d’erreur lors de I'étude d’algorithmes de filtres linéaires du point de
vue de l'arithmétique des ordinateurs. Au cceur de cette méthodologie se trouve le calcul fiable
de la mesure Worst Case Peak Gain d’un filtre, qui est la norme L1 de sa réponse impulsion-
nelle. Lanalyse d’erreur proposée est basée sur la combinaison de techniques telles que I'analyse
d’erreur en Virgule Flottante, l'arithmétique d’intervalles et les implémentations multi-précisions.
Cette thése expose également la problématique de compromis entre les colts du matériel (e.g. la
surface) et la précision de calcul lors de I'implémentation de filtres numériques sur FPGA. Nous
fournissons des briques algorithmiques de bases pour une solution automatique de ce probléme.
Finalement, nous intégrons nos approches dans un générateur de code pour les filtres afin de per-
mettre I'implémentation automatique et fiable de tout algorithme de filtre linéaire numérique (outil
open-source).

Mots clés : arithmétique des ordinateurs; algorithmes rigoureux et fiables; arithmétiques virgule
fixe, virgule flottante, d’intervalles, multi-précision; analyse d’erreur; générateur du code; filtres
linéaires.

	memoirthesis
	Introduction
	I Technical Pre-requisites
	Digital filters
	Discrete-time signals
	Discrete-time systems
	Z-transform
	Design of IIR filters
	Filter Structures
	Conclusion

	Computer Arithmetic
	Fixed-Point Arithmetic
	Floating-Point Arithmetic
	Finite Precision Effects for IIR filters
	Conclusion

	Towards reliable implementation of Digital Filters
	Automatic Filter Code Generator
	Specialized Implicit Form
	Conclusion

	II Improvements to the Specialized Implicit Form
	Specialized Implicit Form for Lattice Wave Digital Filters
	Lattice Wave Digital Filters
	A LWDF-to-SIF conversion algorithm
	Conversion example
	Conclusion

	General algorithms for conversion
	Conversion of data-flow graphs to SIF
	Conversion of arbitrary structures to transfer functions
	Numerical examples
	Conclusion

	III Reliable Fixed-Point Implementation of Digital Filters
	Reliable evaluation of the dynamic range of an exact filter
	State of the Art
	Algorithm for Worst-Case Peak Gain evaluation
	Truncation order and truncation error
	Summation
	Basic bricks
	Numerical examples
	Extending the WCPG theorem to the range of the state variables
	WCPG for interval systems
	Conclusion

	Determining Reliable Fixed-Point Formats
	Determining the Fixed-Point Formats
	Taking rounding errors into account
	Error analysis of the MSB computation formula
	Complete algorithm
	Numerical results
	Application to the Specialized Implicit Form
	Conclusion
	Ongoing work: Off-by-One Problem
	Ongoing work: Taking into account the spectrum of the input signal

	Rigorous verification of implemented filter against its frequency specification
	Problem statement
	Verifying bounds on a transfer function
	Verifying bounds for any LTI realization
	Numerical examples
	Conclusion

	IV Hardware Code Generation
	LTI filters computed just right on FPGA. Implementation of Direct Form I
	Introduction
	Error analysis of direct-form LTI filter implementations.
	Sum of products computing just right
	Implementation results
	Conclusion

	Conclusion and Perspectives
	Appendix
	Lattice Wave Digital Filter basic brick data-flows
	Error analysis behind the Multiple Precision basic bricks
	Coefficients for the examples
	Off-by-One problem

	Bibliography

