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Des signaux partout

o Signaux analogiques : en temps continu
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Des signaux partout

o Signaux analogiques : en temps continu
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Applications : systemes fiables

Filtres numériques :

Algorithmes de transformation de signaux numériques

e Pas besoin de garanties dans la majorité d'applications

e Une garantie est obligatoire pour d'autres applications.
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Applications : systemes fiables

Filtres numériques :

Algorithmes de transformation de signaux numériques
e Pas besoin de garanties dans la majorité d'applications

- M%ﬁﬂrw @

e Une garantie est obligatoire pour d’autres applications.

()

Nous nous intéressons aux garanties liées a I'implémentation
d’algorithmes numériques, surtout dans les systemes embarqués.
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Automatisation

L'implémentation se fait en plusieurs étapes :

Algorithme Algorithme
: numérique N
\-/ codes

Contraintes

>
>
Spécifications

Logiciels

Plusieurs contraintes :

e performance e consommation d’énergie
e surface e mémoire
e précision o etc.

Nous nous intéressons a un processus automatique
d'implémentations fiable.
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Filtres

Domaine fréquentiel

i) I

U(z) u(k) y(k) Y(2)

H A

Filtre linéaire H : atténuation/amplification de propriétés spectrales

Fonction de transfert H(z), z € C _
[H(e)|

H( ) Z?:O biz_i
z) = -
T4+3 0 az™
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Filtres

Domaine temporel
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Filtres

Domaine temporel

* y(k) = & bk = 1) - ¥ ay(k - 1)
. { z(k+1) = Az(k)+ bu(k)
y(k) = cx(k)+ du(k)
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Filtres

Domaine temporel

=1
> B | JJzk+1) = Az(k)+ bu(k)
yk) = ca(k)+ duk)
_ -]
Tt 0 .
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Filtres

Domaine temporel

[ ]
—N
8
—
ol
=+ 5
T =
S—
[l
o
88
= .

Algorithme typique : entrée u(k), état interne x(k), sortie y(k)

Mathématiquement, les différents algorithmes
calculent la méme sortie.
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Algorithmes numériques

Le choix de I'arithmétique et de ses parameétres détermine la
qualité numérique de I'implémentation de I'algorithme.

Pourquoi ?

o les signaux sont discrets en valeur

e les instructions pour |'évaluation peuvent induire
des erreurs

o la propagation et la compensation des erreurs
dépendent des instructions
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Algorithmes numériques

Le choix de I'arithmétique et de ses parametres détermine la
qualité numérique de I'implémentation de I'algorithme.

Pourquoi ?

e les sighaux sont discrets en valeur

e les instructions pour |'évaluation peuvent induire
des erreurs

e la propagation et la compensation des erreurs
dépendent des instructions
De plus, le choix de I'arithmétique et de ses parametres influencent:

e |a vitesse de calculs
e |a surface
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Arithmétiques

e Arithmétique entiére :

y=Y

Implémentation fiable de filtres

21u—1 20
:< w >
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Arithmétiques

2w—1 20

e Arithmétique entiére : _
y=Y < w S
e Arithmétique virgule fixe : —2n 2027l
y=1Y 2 S
N . . . m —
ou £ est un facteur implicite = w —

Implémentation fiable de filtres 25 septembre 2017



UPMC LABORATOIRE D'INFORMATIQUE DE PARIS

Arithmétiques

2w—1 20

e Arithmétique entiére : _

y=Y K w S

e Arithmétique virgule fixe : A I
y=1Y 2 e
N . . . m —

ou ¢ est un facteur implicite = w —

e Arithmétique virgule flottante : | . | | | | | | | | |

y= (-1 Y2
ol e est un facteur explicite

K exposant $—— mantisse —
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Arithmétiques

2w—1 20

e Arithmétique entiére : _
y=Y K w |

e Arithmétique virgule fixe : A I

Yy = Y2£

N . .. L1
ou ¢ est un facteur implicite bl w —

Arithmétique virgule flottante : |s| | | | | | | | |

— S e
Yy = (_1) Y2 K exposant k—— mantisse —
ol e est un facteur explicite

Arithmétique d'intervalles :
.7l ={yeRly<y<7}
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Arithmétiques

2w—1 20

e Arithmétique entiére : _
y=Y K w |

e Arithmétique virgule fixe : A I

Yy = Y2£

N . .. +1 = 7
ou ¢ est un facteur implicite i w —

Arithmétique virgule flottante : | s | | | | | | | | |
y = (_1)8 .Y .2¢ K exposant »Kk—— mantisse —
ol e est un facteur explicite

Arithmétique d'intervalles :
.7l ={yeRly<y <7}

Arithmétique multi-précision : la taille
de la mantisse varie dynamiquement
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Arithmétiques

Arithmétique virgule fixe :
y=1Y . 2¢ Pour I'implémentation
ou £ est un facteur implicite

Arithmétique virgule flottante :
y=(-1)°-Y.2° Pour I'analyse d'erreur
ol e est un facteur explicite

Arithmétique d'intervalles : , .
v, 7] = {y €ER|y<y< y} Pour I'analyse d'erreur

Arithmétique multi-précision : la taille

. . . Pour I'analyse d’erreur
de la mantisse varie dynamiquement
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Algorithmique
de ’'implémentation fiable de filtres

SIF . | Génération du code ~C
Hiz H(z) SIF Algorithme :
A \ée"r:S Virgule Fixe formats

Avant cette these

e Une unification de la représentation des filtres (SIF)
— Plusieurs algorithmes sont déja décrits manuellement en SIF.

e Implémentation virgule fixe unifiée, mais pas fiable

o Génération de C pour le logiciel
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Algorithmique
de ’'implémentation fiable de filtres

H(z H@ | g
A vers SIF | Génération du code C~
SIF @ Algorithme -
Virgule Fixe | formats_
raphe Simulink E
Simulink vers
SIF

¢ Une unification de la représentation des filtres (SIF)

— Plusieurs algorithmes sont déja décrits manuellement en SIF.
— Formats d’entrée supplémentaires

e Implémentation virgule fixe unifiée, mais pas fiable

e Génération de C pour le logiciel
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Algorithmique
de ’'implémentation fiable de filtres

H(z

SIF

SIF | Génération du code C~
9 Algorithme o
Virgule Fixe | formats_
raphe >
Simulink _®

¢ Une unification de la représentation des filtres (SIF)

— Plusieurs algorithmes sont déja décrits manuellement en SIF.
— Formats d’entrée supplémentaires

e Implémentation virgule fixe unifiée, fiableq

e Génération de C pour le logiciel
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Algorithmique
de ’'implémentation fiable de filtres

H(z

SIF

SIF | Génération du code C~
9 Algorithme o
Virgule Fixe | formats_
raphe r. >
Simulink A \9)

v

e

¢ Une unification de la représentation des filtres (SIF)

— Plusieurs algorithmes sont déja décrits manuellement en SIF.
— Formats d’entrée supplémentaires

e Implémentation virgule fixe unifiée, fiable? et vérifiée

o Génération de C pour le logiciel
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Algorithmique
de ’'implémentation fiable de filtres

ne) !)sw
R

raphe

SIF | Génération du code s

Logiciel ASIC
oy | 9 56 |
> —

—® —®

v

e

¢ Une unification de la représentation des filtres (SIF)

— Plusieurs algorithmes sont déja décrits manuellement en SIF.
— Formats d’entrée supplémentaires

Simulink

e Implémentation virgule fixe unifiée, fiable? et vérifiée
o Génération de C pour le logiciel et de VHDL pour des FPGA
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Algorithmique
de ’'implémentation fiable de filtres

H(z SIF
SIF | Génération du code C~
®) | Witaui ki
Virgule Fixe | formats_ VHD
raphe L —
T ®

—®

e

¢ Une unification de la représentation des filtres (SIF)

— Plusieurs algorithmes sont déja décrits manuellement en SIF.
— Formats d’entrée supplémentaires

Simulink

e Implémentation virgule fixe unifiée, fiableq et vérifiée
o Génération de C pour le logiciel et de VHDL pour des FPGA
Production scientifique : 9 publications
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Algorithmique
de ’'implémentation fiable de filtres

H(z SIF
9 \;.\Igo:'m;:]e Logiciel ASIC
irgule Fixe ' formats VHDL
—

— Génération du code
raphe ri FPGA
A \)

v

e

¢ Une unification de la représentation des filtres (SIF)

— Plusieurs algorithmes sont déja décrits manuellement en SIF.
— Formats d’entrée supplémentaires

Simulink

e Implémentation virgule fixe unifiée, fiableq et vérifiée
o Génération de C pour le logiciel et de VHDL pour des FPGA
Production scientifique : 9 publications
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Formats d’entrée supplémentaires

H z:
SIF Génération du code | C

Algorithme Goee
Virgule Fixe formats VHDL
raphe

Simulink
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SIF : Forme Implicite Spécialisée

e Forme matricielle basée sur un systeme d’'équations linéaires
=" Différente de celle par graphes

e L'ordre de calcul est exprimé dans les équations.

e Tous les systemes linéaires sont exprimables en SIF.
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SIF : Forme Implicite Spécialisée

e Forme matricielle basée sur un systeme d’'équations linéaires
=" Différente de celle par graphes

e L'ordre de calcul est exprimé dans les équations.

e Tous les systemes linéaires sont exprimables en SIF.

Idée de base :

Y = mamiu
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SIF : Forme Implicite Spécialisée

e Forme matricielle basée sur un systeme d’'équations linéaires
=" Différente de celle par graphes

e L'ordre de calcul est exprimé dans les équations.

e Tous les systemes linéaires sont exprimables en SIF.

Idée de base :

y «— ma(myu)
1o t+— mu
20y +— mat
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SIF : Forme Implicite Spécialisée

e Forme matricielle basée sur un systeme d’'équations linéaires
=" Différente de celle par graphes

e L'ordre de calcul est exprimé dans les équations.

e Tous les systemes linéaires sont exprimables en SIF.

Idée de base :

y — ma(miu)

1 t+— mu 1 0 t _ (i u
2.y +— mot —my 1 Y 0
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SIF : Forme Implicite Spécialisée

e Forme matricielle basée sur un systeme d’'équations linéaires
=" Différente de celle par graphes

e L'ordre de calcul est exprimé dans les équations.

e Tous les systemes linéaires sont exprimables en SIF.

Idée de base :

y +— ma(miu)
1 t+— mu 1 0 t _ (i "
2.y +— mat —my 1 Y 0

Contributions :

e Conversion des Lattice Wave Digital Filters vers SIF

o Conversion automatique de graphes Simulink vers SIF
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Conversion a partir de Simulink

Simulink ;
u(k)

. ~1 - .
m y(k)
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Conversion a partir de Simulink

Simulink : SIF :
® IS
'I/

7 =89-278 4, =43.277 4, =11.277

Idée clé de notre algorithme de conversion :

o |dentification des entrées, sorties, états, variables temporaires
e Construction des équations

e Tri topologique

e Recopie exacte des coefficients
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Conversion a partir de Simulink

Simulink : SIF :
g I
1 o o o)
[E]m] [m]
ooo
[m] oo
e [m]
ooo
oo [m]
oenO
ooo
[m] oo
[m]
[m]
[m]
Y

7 =89-278 4, =43.277 4, =11.277

Idée clé de notre algorithme de conversion :

o |dentification des entrées, sorties, états, variables temporaires
e Construction des équations

e Tri topologique

e Recopie exacte des coefficients
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Conversion a partir de Simulink

Simulink : SIF :
u(k) _’1\
1=

71 =89-278 4, =43-277 4, =11-27"

Idée clé de notre algorithme de conversion :

o |dentification des entrées, sorties, états, variables temporaires
e Construction des équations

e Tri topologique

e Recopie exacte des coefficients
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Algorithmes numériques fiables

H(z)

H(z) SIF
SIF Génération du code | ©
Logiciel
formats VHDL
graphe Simuink | SIF
Simulink vers
SIF
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Algorithmes numériques fiables

H(z) A@ | gF
SIF Génération du code | ©
Logiciel
formats VHDL
graphe sSimuink | SIF

Simulink vers
SIF

Bit de poids fort - Blt de poids faible

-«

N\NEF /7

Formats Virgule Fixe
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Représentation d’état

Représentation d'état d'un filtre linéaire H :

z(k+1) = Az(k)+ bu(k)
H{ y(k) = (k) + du(k)

Les conversions entre SIF et représentation d'état sont exactes.

SIF Conversion Représentation
d'état
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UPMC

Dynamique des variables
Worst-Case Peak Gain

Entrée u(k) Filtre stable Sortie y(k)
£ B
Temps ] H Temps

Amplification/Atténuation
VE, [u(k)] < u VE, ly(k)| < ((H))u

Worst-Case Peak Gain : ((H)) = ||h], = |d| + ) |cA*b|
k=0

25 septembre 2017
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Probleme du choix des formats

e Contraintes : largeur w, fixée pour la variable de sortie y
e But : pas de dépassements, borne rigoureuse sur les erreurs

e Bonus : minimiser les erreurs
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Probleme du choix des formats

e Contraintes : largeur w, fixée pour la variable de sortie y
e But : pas de dépassements, borne rigoureuse sur les erreurs

e Bonus : minimiser les erreurs

z(k+1) = Az(k)+ bu(k)
H{ y(k) = ca(k) + dulk)

Probléme : trouver le plus petit m, tel que pour tout &
ly(k)| < 2™ (1 —27"H)
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Probleme du choix des formats

e Contraintes : largeur w, fixée pour la variable de sortie y
e But : pas de dépassements, borne rigoureuse sur les erreurs

e Bonus : minimiser les erreurs

z(k+1) = Az(k)+ bu(k)
H{ y(k) = ca(k)+ du(k)

Probléme : trouver le plus petit m, tel que pour tout &
()= ly(k)] < 2™ (127w
Solution mathématique :

my = [logy (((H)) u) — logy (1 —2'7"™)]
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Probleme du choix des formats

e Contraintes : largeur w, fixée pour la variable de sortie y
e But : pas de dépassements, borne rigoureuse sur les erreurs

e Bonus : minimiser les erreurs

z(k+1) = Az(k)+ bu(k)
H{ y(k) = ca(k) + dulk)

Probléme : trouver le plus petit m, tel que pour tout &
(H)u = |y(k)| < 2™ (1—27=tl)
Solution mathématique :
my = [logy (((H)) @) —logy (1 —2'7)]
Solution pratique : contrdler la précision du WCPG pour que

0<my—my <1
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Rebouclage des erreurs de calcul

Filtre exact H est :

xz (k+1) = Az (k) + bu(k)
H { y (k) — cx (k) + du(k)
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Rebouclage des erreurs de calcul
Filtre implémenté H® est :

HO{ 2Ok +1) = O, (Az®(k) + bu(k))
yO(k) = Om,(cx®(k) + du(k))

ou O, est un opérateur qui garantit |'arrondi fidele :

|<>m(~73) o .Z‘| S 2m—w+1
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Rebouclage des erreurs de calcul
Filtre implémenté H® est :

240 z0(k+1) = Az (k) + bu(k) + e.(k)
{ yO(k) = cx’ (k) + du(k) + ey(k)

avec

lea (k)] < 2Me 7P et ey (k)] < 2Tt

u(k)

A < () (3mir1)
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Algorithme fiable

u(k)

© Estimation initiale de la position du bit de poids fort m,
pour le filtre exact H

® Prise en compte des erreurs induites par le format choisi
a l'aide du filtre Ha, puis calcul du bit de poids fort mg

QO — 0
© S.I my = my, renvoyer m,
sinon m, < m, + 1 et retourner a |'étape 2
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Exemple numérique

Largeurs : 16 bits
Entrées : Vk, —1 < u(k) <1
Formats virgule fixe :
u T T2 3 Y
bit de poids fort 0 5 5 5 1
bit de poids faible -15 -10 -10 -10 -14

Borne sur I'erreur : |A(k)| <27
Temps : 0.012 s
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Retour vers le générateur

H(z)

H(z) SIF
SIF Génération du code | C
Algorithme el
Virgule Fixe | formats VHDL
graphe simuink | SIF
Simulink vers
SIF

ion fiable de filtres 25 septembre 2
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Spécifications fréquentielles

Réponse fréquentielle :

phase

H () = |1 (e%)] <H (&)

module
Spécifications :
[H (e™)]
I p
Bpr T

Bs

Ws; Wpy  Wpy Ws, m

coupe-bande passe-bande coupe-bande

B<|H()| < B, VYw € [wr,wy] C[0,7]
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Vérification d’une implémentation

Filtre implémenté
Booléen

Spécifications
fréquentielles
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Vérification d’une implémentation

Filtre implémenté
Booléen

Spécifications

fréquentielles

Approches existantes : Notre approche fiable :
e par simulations e pas de simulation, seulement preuves

o réponse fréquentielle e arithmétiques rationnelle et
approchée d'intervalles

But :
e Garantie d'implémentation

e Calcul rapide de cette garantie
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Vérification d’une fonction de
transfert

Nous avons besoin de montrer que Vz = ¢/“,w € Q C [0, 7]

B<|H(z)| <B
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Vérification d’une fonction de
transfert

Nous avons besoin de montrer que Vz = ¢/“,w € Q C [0, 7]

B <|H()P < B
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Vérification d’une fonction de

transfert

Nous avons besoin de montrer que Vz = ¢/“,w € Q C [0, 7]

B <|H()P < B

ou

W@ am)al)  aa(l) - w@)

v(z) et w(z) sont des polynémes a coefficients réels.

=
IS
~—
o
Il
=
—~
I\
~—
T
S
—~
N
~—
Q“
~—
S
—
N
~—~
S
—~
~
<
—~
N
~

s}

A. Volkova

Implémentation fiable de filtres

25 septembre 2017
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Simplification du probleme

2 v(z) _ 2 z = el
p Sw(z)sﬂ Yw € Q C [0, 7]
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Simplification du probleme

2 v(z) _ 2 z = el
p Sw(z)gﬂ Yw € Q C [0, 7]

Pas besoin de gérer les complexes

Changement de variable : ¢ = tan§
w 1=t 2t
— Jw:
i e R
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82 < v(z) 7 z = el
= T w(z) T Yw € Q C [0, 7]
, 4
1= 42 t=tan%
o _ Vige tite) _ 2 2
é _w(l_t2+j 2 )SIB VWEQQ[O,TF]
1+t I+t t € [—o0, 0]

25 septembre 2017
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s _ (t) + (1)
== 500 + jmh)
N—

€R car |H(2)|?

<B

Polynémes r, s, x, 11 € R[¢]

z=ev
Yw € Q C [0, 7]
1
t=tang
Yw € Q C [0, 7]
t € [—o0, 0]

A. Volkova
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UPMC

Simplification du probleme

2 o v(2) _ 2 z =€
p Sw(z)gﬂ VYw € Q C [0, 7]
1
o () =2 t=tan¥
e O €0 C [0,7]
t € [—o0, 0]

Maintenant, on ne travaille qu'avec des réels.

t = tan % envoie w sur tout R

Changement de variable : £ = —t+2_2‘tt 1

25 septembre 2017
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UPMC

Simplification du probleme

2 v(z) _ 2 z = el
p Sw(z)gﬂ Yw € Q C [0, 7]
1
(t) —=2 t=tan¥
g < = s(t) — <P Vw e N C [3,7r]
t € [—o0, 0]
1-2 ¢
-9 cezclo] 1]

25 septembre 2017
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UPMC

Simplification du probleme

A. Volkova

Implémentation fiable de filtres

z=ev

Yw € Q C [0, 7]
1

B2 t=tang
Yw € Q C [0, 7]
t € [—o0, 0]
ﬁ €=t+2 Vi2+4
Ee=C [0 1]
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Méme plus simple
Le probléme se résume a montrer que V¢ € = C [0, 1]

f(€) =0

avec f € R[¢] donné par

2

1©) = 0@ (7~ 8) (&) — (82 + ") a(©))
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Méme plus simple
Le probléme se résume a montrer que V¢ € E C [0, 1]

f(§) =0

avec f € R[¢] donné par

2

1©) = 0@ (7~ 8) (&) — (82 + ") a(©))

Vérification que f est positif ou nul

Notre algorithme est basé sur :

e la technique de Sturm qui donne
le nombre de zéros réels d'un polynome

e une subdivision en sous-intervalles

e des évaluations en arithmétique d'intervalles multi-précision
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Algorithme de vérification

La fonction de transfert vérifie-t-elle les spécifications fréquentielles?

Oui Non
[H ()
8 N \u/
—t—F—t+—+3F++t+—
(le LZ): 433 (:’4 @
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Calcul de la fonction de transfert

Implémentation Fonction de
de filtre transfert
— ——

o

A. Volkova Implémentation fiable de filtres 25 septembre 2017
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Calcul de la fonction de transfert

Implémentation
de filtre

eprésentation Fonction de

. d’état . transfert
Conversion i Conversion

= B
Fonction de transfert de la représentation d'état :
H(z)=c(zI —A)7'b+d

A. Volkova Implémentation fiable de filtres 25 septembre 2017
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UPMC

Calcul de la fonction de transfert

Représentation Fonction de
. SIF . d’état . transfert
Conversion ... Conversion ... Conversion

— % —w @

Fonction de transfert de la représentation d'état :
Hz) =c(zI-XEX Y 'b+d

Implémentation
de filtre

Nous calculons une approximation H(z) de H(z):

~ Z@iz_i
H(z) =S5 =

BE" 'erreur ‘(H - ﬁ) (ej‘*’)’ peut &tre rendue arbitrairement petite.
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Calcul de la fonction de transfert

Implémentation Représentation Fonction de
de filtre SIF d’état transfert

— Conversion ... Conversion ... Conversion

—©w —w» /@@

Fonction de transfert de la représentation d'état :
Hz) =c(zI-XEX Y 'b+d

Nous calculons une approximation H(z) de H(z):

~ E@iz_i
H(z) =S5 =

BE" 'erreur ‘(H - ﬁ') (ej‘*’)’ peut &tre rendue arbitrairement petite.

Probleme

[l nous faut une borne rigoureuse sur |'erreur ‘(H - H) (ej“’)‘.
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Comment borner ’erreur

Calcul de la fonction de transfert H(z) d'une représentation d'état S

S
?
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Comment borner ’erreur

Calcul de la fonction de transfert H(z) d'une représentation d'état S
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Comment borner ’erreur

Calcul de la fonction de transfert H(z) d'une représentation d'état S

s. S
\ AN
H H
Transformation de I vers gest exacte :
—a 1 by — @y bo
A- -]
1 :
—a, O 0 by, — an bo
¢=(1 0 --- 0) d="b
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Comment borner ’erreur

Calcul de la fonction de transfert H(z) d'une représentation d'état S

S.— § = as
? \I
H H
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Comment borner ’erreur

Calcul de la fonction de transfert H(z) d'une représentation d'état S

N

H — H = AH

A. Volkova Implémentation fiable de filtres 25 septembre 2017
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Comment borner ’erreur

Calcul de la fonction de transfert H(z) d'une représentation d'état S

s.— &
)
H — H = AH

= AS

Relation entre AS et AH :
‘(H - Er) (ej‘“)’ < ((AS)), Vw € [0,27]

ou ((AS)) est encore une fois le WCPG du systeme AS.
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Evaluation fiable du WCPG

WCPG fiable est nécessaire pour :
e déterminer la dynamique des variables
e analyser |'erreur induite par les calculs en précision finie

e borner I'erreur d'approximation d'une fonction de transfert

A. Volkova Implémentation fiable de filtres 25 septembre 2017



Evaluation fiable du WCPG

WCPG fiable est nécessaire pour :
e déterminer la dynamique des variables
e analyser |'erreur induite par les calculs en précision finie

e borner I'erreur d'approximation d'une fonction de transfert

Probleme dans le cas de filtres MIMO
Calculer S, approximation de la matrice

o0
(H)) = D]+ ( CA*B
k=0
telle que pour un € donné a priori

[{((H)) = 8| <e

I

IS Nous utilisons une arithmétique en multi-précision dynamique.
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Borne de troncature

Nous cherchons N tel que I'erreur de troncature vérifie

Z ’C’A’“B’ ‘CA’“B) <el

Solution mathématique :  Solution pratique :
e Valeurs propres calculées avec LAPACK
N > 10g2 ”MHmzn ° A th /t- dy- t ”
= | rithmétique d’intervalles

o Théorie des Inclusions Vérifiées (Rump)

ou

o IRI
M =510 T o)

(Ri)ij = Ci1By
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Evaluation : mise a la puissance

N
> |cas|
k=0

Nous proposons :
A=XEX !

dou A* = X EF X1

ol
X sont les vecteurs propres

E sont les valeurs propres

A. Volkova Implémentation fiable de filtres
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Evaluation : mise a la puissance

N N
S|eats| - Y|evrivii| <s
k=0 k=0
Nous proposons : En pratique :
A=XEX! VaX e T=V9IAV+A

d'ot A¥ = XE" X! . L
o Opérations en multi-précision avec
la borne de I'erreur donnée a priori
ou e A est contrdlée pour satisfaire la
borne €5 sur |'erreur propagée
E sont les valeurs propres e || T||, <1 vérifié rigoureusement

avec le théoréeme de Gershgorin

X sont les vecteurs propres
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Evaluation : sommation

Nous continuons par analogie

SLlovrtv sl - sl o <a

Siole T B~ Y, |C'PBY

<eéey
Sl e PeB = g 1| < 5

‘Zszo |Ly| — SN‘ < eg

1" Trois briques de base : XY +Z, X +|Y|, X !
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UPMC

Exemple de vérification en
fréquence

Une implémentation de notre filtre-exemple :

u(k)

Y1 =89.278
Y2 =43.277
3 =11-277

102 Vw e [0 , 7] (passe-bande)
10736 Vw € [$57,7]  (coupe-bande)

Résultat : v le filtre implémenté respecte les spécifications.

Temps de vérification : 1.9 s
25 septembre 2017 32/38
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Exemple de vérification

Pendant ces 1.9 secondes...

e Arithmétique rationnelle

o Réécriture de H(z) en f(&)
e Calcul de suites de Sturm

o Arithmétique d'intervalles

¢ Inclusions vérifiées de valeurs propres
e Borne de troncature N

e Arithmétique multi-précision dynamique

¢ Calcul de cercles de Gershgorin
e Evaluation du WCPG

e Arithmétique virgule flottante IEEE 754
e Calcul de valeurs propres avec LAPACK

... pour vérifier une implémentation en virgule fixe !
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En résumé

H(z H@ | gF
A \g'r:s SIF | Génération du code C~
( ) Algorithme - [Logiciel | [ ASIC_|
\Q Virgule Fixe | formats 2oe VHD!
> [ FreA |
graphe | simuink | SIF 70
Simulink Vers A Q Q

e ]

e Nous avons rendu I'implémentation de filtres fiable et
automatique
o Utilisation rigoureuse d'arithmétiques diverses
o Implémentations virgule fixe vérifiant des bornes
d’erreur a priori et en fréquentiel et en temporel
e Nous avons étendu la chaine d'outils du générateur de filtres
o Nouvelles conversions depuis d'autres formats d'entrée
e Branchement avec FloPoCo pour I'implémentation FPGA

A. Volkova Implémentation fiable de filtres 25 septembre 2017 34/38



UPMC LABORATOIRE D'INFORMATIQUE DE PARIS 6

Développement de logiciels

H(z

SIF | Génération du code C~

e
irgule Fixe ' formats VHD
: ==

F® —®

v

raphe

Simulink

e Outils open-source
e Implémentation en C/C++, Sollya,

Python et Matlab F IXI F
e =~ 15000 lignes de code TOOLBOX

Génération de VHDL avec FloPoCo

A. Volkova Implémentation fiable de filtres 25 septembre 2017
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Perspectives : demain a 9h00...

H(z

SIF | Génération du code C~

AHERTTE

Virgule Fixe | formats

=
—®

—®

raphe

Simulink

e Gagner un peu de place
* Résoudre le probleme « off-by-one » (0 < m, — m, <1)
e Gagner plus de place
e Prendre en compte des propriétés supplémentaires des signaux
d’entrée (propriétés spectrales)
o Etudier divers algorithmes selon plusieurs métriques
o LUTs, surface
e précision
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Perspectives : moyen terme

H(z H@ | gF
A \g'r:s SIF | Génération du code C~
( ) Algorithme - [Logiciel | [ ASIC_|
\Q Virgule Fixe | formats 2oe VHD!
> [ FreA |
graphe | simuink | SIF 70
Simulink Vers A Q Q

e ]

e Implémentation de filtres fiables
o Intégrer les méthodes de conception des fonctions de transfert
o Relacher les contraintes de spécifications fréquentielles

e Outils arithmétiques
o Calculer des valeurs propres d'une matrice en précision variée
o Résoudre des équations de Lyapunov, etc.

e Optimisation
e Entourer le générateur avec des boucles d'optimisation
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Perspectives : long terme

H(z

SIF C

... Génération du code =
Algorithme o —
Logiciel ASIC
Virguie Fixe | formats. [Cogicel | [ASIE |

=
—®

—®

raphe

Simulink

o Coté arithmétique
e Qutils numériques pour I'algebre linéaire
o Evaluation des approximations rationnelles
o Coté arithmétique pour le traitement du signal

e Concevoir la fonction de transfert avec les meilleurs
coefficients quantifiés
o Considérer les filtres non-linéaires, Kalman, etc.
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By rewriting we obtain

{ Jt(k+1) =

A. Volkova

z(k+1) =
y(k) =

LABORATOIRE D'INFORMATIQUE DE PARIS 6

SIF

A MIMO LTI system in SIF representation is characterized by

J 0 0\ [tk+1)
~K I, 0| |z(k+1)
SRRt

Kt(k+1)
Lt(k+1)

+
_l’_

Implémentation fiable de filtres

0 M N\ /t(k)
o P Q=
7 o))

Pxz(k) + Qu(k)
Rx(k) + Su(k)

25 septembre 2017
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Lattice Wave Digital Filters

Stage 0

Stage 2

Stage (n — 1)

Y2-(n—1)

e ot

Yo

NP1 ouT1

outz NP2
Y2 (n—1)—1
wei oumi

{

Input

NPT OUTI
m

out2 e

s

INPL OUTL
oura e

Low-pass

[T NPT ouTn NP ouTT
72 6 F2n
L=
Stage 1 Stage 3 Stage n
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The error filter Ha

Denote

Then, the filter Ha = H — HO is

Ak +1) = AAL(K)
HA{ AK) = CALK)

A. Volkova Implémentation fiable de filtres 25 septembre 2017



Worst-Case Peak Gain

Sensitive real-life filter

Input: A highly sensitive 5t order transfer function from
industrial application®.
Problem: given inputs from interval [—1.125;1.125], determine
the interval for output variables.
Result:
e Naive WCPG, i.e. summing 1000 terms in double precision:
y = 1.6238497 x 1.125 = 0.8693. ..

e Our WCPG with ¢ = 2753:
y =1.9997191 x 1.125 = 1.1697 . ..

'Obtained from Xilinx
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Worst-Case Peak Gain

Random filter

Input: Consider a stable 5" order random SISO filter
Problem: given inputs from interval [—1;1), determine the
interval for output variables.
Result:
» Naive WCPG (1000 terms in double precision) y = 105.66...
o Our WCPG with ¢ = 2753 5 = 772.48...

200 T T T
—— naive bound
—— worst-case output

y(k)

—100 £

72000 400 800 1,200 1,600 2,000

k
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Worst-Case Peak Gain
Random filter

Input: Consider a stable 5" order random SISO filter
Problem: given inputs from interval [—1;1), determine the
interval for output variables.

Result:

LABORATOIRE D'INFORMATIQUE DE PARIS 6

» Naive WCPG (1000 terms in double precision) y = 105.66...

o Our WCPG with ¢ = 2753 5 = 772.48...

o 800
s
=
o 600
=
a
3
'g 400 |-
=
E
§ 200 f
oy
o
< . . . .
1 2 3 4 5
Truncation order -10*

A. Volkova Implémentation fiable de filtres 25 septembre 2017
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Worst-Case Peak Gain

Examples

Example 1: comes from Control Theory, describes a controller of
vehicle longitudinal oscillation
Example 2: 12th-order Butterworth filter

Example 1 Example 2
sizsn,pand ¢ n=10, p=11, ¢=1 n=12, p=1 ¢=25

1—p(A) 1.39 x 1072 8.65 x 1073

max (S y) 3.88 x 10! 5.50 x 10°

min(Sy) 1.29 x 10° 1.0 x 10°
c 2-5 2—53 9—600 2-5 9—53 9—600
N 220 2153 29182 308 4141 47811
Inversion iterations 0 2 4 2 3 5
overall max precision (bits) 212 293 1401 254 355 1459
V~1 max precision (bits) 106 173 727 148 204 756
P max precision (bits) 64 84 639 64 86 640
S n max precision (bits) 64 79 630 64 107 658
Overall execution time (sec) 0.11 1.53 60.06 0.85 11.54 473.20
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Transfer Function of a State-Space

Transfer function of a single-input single-output state-space S:
H(z)=c(zI —A)'b+d
Using the eigendecomposition A = XEX ~:

P(2)

0z =46 T

P(z) = S (eX)(X ) (= - \y)
i1 i

Q=) = [z - )
j=1

We compute an approximation ﬁ(z) in Multiple Precision
arithmetic with mpmath.
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Verification of non-negativity
To verify f(§) > 0, V¢ € 2 = [£1,&2] C [0, 1] we check if

(1) f(€) has no zeros /\/\/
f(&) > 0 for some &' € [¢1, & I
& ¢ &

(i) f(&) has one zero M

f(&) >0and f(&) >0 A &
(iii) interval = can be split into subintervals w

s.t. (i) or (ii) are satisfied for every & & &

subinterval e

We use Sollya tool for the implementation

e Number of zeros: Sturm's theorem

e Evaluations: interval multiple precision arithmetic
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Verification of specifications

Sturm’s technique

Sturm'’s sequence is a sequence of polynomials py(z), ..., pm(x):

po(z) = p(z)
pi(z) = p'(z)
p2(z) = —rem(po, p1) = p1(z)qo(z) — po(z),
p3(z) = —rem(p1, p2) = p2(z) 1 (z) — p1(z),

X

0= —rem(pm—1,Pm)
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Verification of specifications

Numerical examples
Input: four realizations of the same filter
Problem: verify realizations after coefficient quantization to
32/16/8 bits

Results:
wordlength 32 16 8
margin v unstable  unstable
DFII _—
t time 12.49s - -
margin v v 4.68e-3 dB
DFllt _—
P time 13.12s 419s  104.01s
State-Space  margin 6.16e-10 dB v 6.71e-1 dB
Balanced time 12.27s 18.18s 92.05s
. margin 3.80e-10 dB v 1.73e-2 dB
tt W -
Lattice Wave — 920.88s 4585  200.83s
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Verification of specifications

Numerical examples
Input: four simple frequency specifications
Problem: Verify and compare transfer function design methods.
Results: comparison of SciPy in Python and Matlab

Butterworth  Chebyshev Elliptic
margin (dB) margin (dB) margin (dB)
lowpass I\/Ia.tlab 1.29e-17 7.93e-17 v
SciPy 2.14e-15 4.48e-2 4.48e-2
highpass I\/Ia.tlab 2.77e-16 6.94e-17 4.48e-2
SciPy 3.02e-15 2.29e-16 4.48e-2
bandpass I\/Ia.tlab 3.04e-17 v v
SciPy v 4.48e-2 4.48e-2
Matlab 4.5%-16 3.09e-15 v
bandstop

SciPy v 6.36e-15 7.02e-6




Verification of specifications

Numerical examples

Filter implementation: 14" order bandpass filter
Specifications:

{ H(el:“’)
0dB < |H(e™)

Verification result: implemented filter does not pass the
verification against frequency constraints
Verification time: 53 s

—80dB  Vw € [0,17kHz] (stopband)
1—-10"*dB Vw € [21kHz,25kHz] (passband)
~80dB  Vw € [27kHz, 30kHz] (stopband)

ININAINA
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Verification of specifications
Numerical examples

Filter implementation: 14" order bandpass filter
Verification result: implemented filter does not pass the
verification against frequency constraints

Verification time: 53 s

Frequency response:

—20}

—40}

—601]

Amplitude, dB

—80 1|

—100

-120

0 7 21 B2 3
Frequency, kHz
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Verification of specifications
Numerical examples

Filter implementation: 14" order bandpass filter
Verification result: implemented filter does not pass the
verification against frequency constraints

Verification time: 53 s

Frequency response:

Amplitude, dB

21 22 23 24 25
Frequency, kHz
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Verification of specifications
Numerical examples

Filter implementation: 14" order bandpass filter
Verification result: implemented filter does not pass the
verification against frequency constraints

Verification time: 53 s

Frequency response:

Amplitude, dB
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Binding with FloPoCo

FloPoCo:

constants SOPC

input formats architecture .vhdl
generator

output format

Figure: Interface to a Sum-Of-Product-by-Constant generator

Our tool: we deduce a lower bound on the error of computation
of each Sum-of-Product s.t. the error-bound on the filter’s output

is respected.

e No need to quantize
coefficients

¢ Reliable
25 septembre 2017 52/38

e Push-button

e Can implement any
structure
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Worst-Case Peak Gain

Powering matrix A

N

> |cA"B]

k=0

= . cancellation

less cancellation

Va~Xand T~ FE

TV 1ixAxV

A =V x Tk x V1
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Worst-Case Peak Gain

Step 3
N N
M levrtv Bl - Y |C'T*B'|| <es
k=0 k=0

Step 3 Compute the products C' V and V!B such that the
propagated error of matrix multiplications is bounded
by e3.

S |cats|
k=0
5" |ca*B|
k=0
5 ’CVT’CV_IB‘
k=0

5 |c’ T’CB’|
k=0
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Worst-Case Peak Gain

Step 4
S |cats|
N N k=0 f
Z |C/ TkB/| — Z|C/PkB/| <éy 5" |catB|
k=0 k=0 k=0 N
5 ’CVT’“V_IB‘
k=0
PO =1 g: |C'TkB’|
P, =TQ®P,_1 k=0
Izvj |c’'P,B’|
k=0

Step 4 Compute the powers Py, of matrix T such that the
propagated error of matrix multiplications is bounded
by E4.
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Worst-Case Peak Gain

Step 5
S |cats|
N N =0
Z|C/PkB/| — Z|Lk| <es %|CA’“B|
k=0 k=0 =0
> ’CVT’“V_IB‘
k=0
— / /
L,:=C"®(P,®B’) & |C’T’CB’|
k=0
N
k¥O|C’PkB’|
Step 5 Compute on each step the matrix product C’' T* B’ -
such the overall error of these multiplications on each
step is bounded by «5.
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Worst-Case Peak Gain

Step 5
S |cats|
N N k=0 f
Z|C/PkB/| — Z|Lk| <es %|CA’“B|
k=0 k=0 =0
> ’CVT’“V_IB‘
k=0
L, =C'®(P,®B') & |orrp|
k=0
N
k¥O|C’PkB’|
Step 5 Compute on each step the matrix product C’' T* B’ -
such the overall error of these multiplications on each S Ll
step is bounded by ¢5. -
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Worst-Case Peak Gain

Step 6
S |cats|
N k=0 .
Z|Lk| — Sn| <es 5 |ca*s|
k=0 k=0

> ’CVT’CV_IB‘
k=0

Sk := Sk—1D|Ly|

S |C' T’CB’|
k=0

N
k¥O|C’PkB’|
Step 6 Compute the absolute value of matrix and accumulate R
it in the result such that the error is bounded by &g. S 1Ll
Tl
SN
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Worst-Case Peak Gain
Algorithm

Taking ¢; = %5 we obtain that 1 + 9 + ... + 6 < € hence the
overall error bound is satisfied.

A floating-point evaluation of the WCPG:
Step 1: Compute N
Step 2: Compute V'
T+—inv(V)(A® V)
Step3: B+ inv(V)® B
C'+—~C®V
S_1 — |D|, P_1 — In
for k& from 0 to N do:
Step 4: P+ TP,
Step5: Ly + C'® (Pr® B')
Step 6: Sy < Si_1 @ abs(Ly)
end for
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Worst-Case Peak Gain

Basic bricks

e multiplyAndAdd(A, B, C,§): for A € CP*", B € C"*1,
C € CP*4, computes a matrix D € CP*? such that

D=A-B+C+A,

where the error-matrix A is bounded by |A| < 4, for a
certain scalar absolute error bound §, given in argument to
the algorithm.

The algorithm performs an error-free scalar multiplication and uses
a modified software-implemented Kulisch-like accumulator.
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Worst-Case Peak Gain

Basic bricks

e sumAbs(A, B,0): for A € RP*", B € CP*", computes a
matrix C € RP*" such that

C=A+|B|+A,

where the error matrix A is bounded by |A| < 4, for a certain
scalar absolute error bound 6, given in argument to the
algorithm.
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Worst-Case Peak Gain

Basic bricks

e inv(V,0): for a complex square matrix V' € C"*",
computes a matrix U € C™*™ such that

U=V'+A,

where the error matrix A is bounded by |A| < ¢, for a certain
scalar absolute error bound 6, given in argument to the
algorithm.

The algorithm is based on Newton-Raphson matrix iteration,
requires a seed matrix in argument and works on certain
conditions, easily verified in our case.
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Worst-Case Peak Gain

Basic bricks

e frobeniusNormUpperBound(A,d): for A € CP*™ computes
f an upper bound on the Frobenius norm of A such that

f=1Alp+~

where 0 < v < §, for a certain scalar absolute error bound 6,
given in argument to the algorithm.
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Interval Worst-Case Peak Gain

Given a state-space system H = ([A], [B], [C], [D]), compute an
approximation S on the WCPG

(1)) = 1D]| + Y |4 B]|
k=0

such that two properties are ensured:
* bound property: ((#)) < S element-by-element;

e if coefficients’ radii — 0 and precision — oo then the exact
((H)) is contained in an e neighborhood of the approximation
S for an a priori given small £ > 0.
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Interval Worst-Case Peak Gain

Computing the eigensystem of interval matrix

Eigenvalues of interval matrix

Compute enclosures AT such that VA € AT, A(A) € AT

Approach
Following the works of Xu and Rachid (1996) and Rohn(1998), use
the Generalized Gershgorin's Circles theorem.

Eigenvectors of interval matrix

Given the enclosures on eigenvalues A%, compute enclosures VZ
such that YA € AZ,VA € AT if A= AV, then V € VI,

Approach

Use Rump's theory of Verified Inclusions.
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