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Des signaux partout

• Signaux analogiques : en temps continu

Temps

• Signaux numériques : en temps discret

Temps
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A. Volkova Implémentation fiable de filtres 25 septembre 2017 1/38



upmc laborato i r e d ’ i n format ique de par i s 6

Applications : systèmes fiables

Filtres numériques :

Algorithmes de transformation de signaux numériques

• Pas besoin de garanties dans la majorité d’applications

• Une garantie est obligatoire pour d’autres applications.

Nous nous intéressons aux garanties liées à l’implémentation
d’algorithmes numériques, surtout dans les systèmes embarqués.
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Automatisation
L’implémentation se fait en plusieurs étapes :

Spécifications

Contraintes
LogicielsAlgorithme

numérique
Génération 

de
codes

Algorithme
mathématique

Plusieurs contraintes :

• performance

• surface

• précision

• consommation d’énergie

• mémoire

• etc.

Nous nous intéressons à un processus automatique
d’implémentations fiable.
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Filtres
Domaine fréquentiel

u(k) y(k)H Y (z)U(z)

Filtre linéaire H : atténuation/amplification de propriétés spectrales

Fonction de transfert H (z ), z ∈ C

H (z ) =

∑n
i=0 biz

−i

1 +
∑n

i=1 aiz
−i

!

��H(ej!)
��
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Filtres
Domaine temporel

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k) y(k)

• y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

•
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

• . . .

Algorithme typique : entrée u(k), état interne x (k), sortie y(k)

Mathématiquement, les différents algorithmes
calculent la même sortie.
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Mathématiquement, les différents algorithmes
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Algorithmes numériques

Le choix de l’arithmétique et de ses paramètres détermine la
qualité numérique de l’implémentation de l’algorithme.

Pourquoi ?

• les signaux sont discrets en valeur

• les instructions pour l’évaluation peuvent induire
des erreurs

• la propagation et la compensation des erreurs
dépendent des instructions

De plus, le choix de l’arithmétique et de ses paramètres influencent:

• la vitesse de calculs

• la surface

• ...
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Arithmétiques

• Arithmétique entière :
y = Y w

2w−1 20

• Arithmétique virgule fixe :
y = Y · 2`
où ` est un facteur implicite

• Arithmétique virgule flottante :
y = (−1)s ·Y · 2e
où e est un facteur explicite

• Arithmétique d’intervalles :
[y , y ] =

{
y ∈ R | y ≤ y ≤ y

}

• Arithmétique multi-précision : la taille
de la mantisse varie dynamiquement
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Arithmétiques

• Arithmétique entière :
y = Y

• Arithmétique virgule fixe :
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où ` est un facteur implicite

Pour l’implémentation
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Algorithmique

de l’implémentation fiable de filtres

H(z) SIFH(z)
vers
SIF

CSIF

formats

Algorithme
Virgule Fixe

Génération du code 

Logiciel 

Avant cette thèse

• Une unification de la représentation des filtres (SIF)

– Plusieurs algorithmes sont déjà décrits manuellement en SIF.

– Formats d’entrée supplémentaires

• Implémentation virgule fixe unifiée, mais pas fiable

• Génération de C pour le logiciel

Production scientifique : 9 publications

A. Volkova Implémentation fiable de filtres 25 septembre 2017 8/38



upmc laborato i r e d ’ i n format ique de par i s 6

Algorithmique
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Algorithmique

de l’implémentation fiable de filtres

Vérification de spécifications

graphe Simulink
vers
SIF
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Production scientifique : 9 publications
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A. Volkova Implémentation fiable de filtres 25 septembre 2017 8/38



upmc laborato i r e d ’ i n format ique de par i s 6

Algorithmique
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Formats d’entrée supplémentaires

graphe Simulink
vers
SIF

Simulink

SIF

H(z) SIFH(z)
vers
SIF

C

VHDL

SIF

formats

Algorithme
Virgule Fixe

Génération du code 

Logiciel 
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SIF : Forme Implicite Spécialisée

• Forme matricielle basée sur un système d’équations linéaires

� Différente de celle par graphes

• L’ordre de calcul est exprimé dans les équations.

• Tous les systèmes linéaires sont exprimables en SIF.

Idée de base :

y = m2m1u

1: t ←− m1u
2: y ←− m2t

(
1 0
−m2 1

)(
t
y

)
=

(
m1

0

)
u

Contributions :
• Conversion des Lattice Wave Digital Filters vers SIF

• Conversion automatique de graphes Simulink vers SIF
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• Forme matricielle basée sur un système d’équations linéaires
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Conversion à partir de Simulink

Simulink :
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1

z−1

-1 z−1

+ + z−1 + -1

+ 0.5
y(k)

γ1 = 89 · 2−8, γ2 = 43 · 2−7, γ3 = 11 · 2−7

SIF :

Idée clé de notre algorithme de conversion :

• Identification des entrées, sorties, états, variables temporaires

• Construction des équations

• Tri topologique

• Recopie exacte des coefficients
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Algorithmes numériques fiables

graphe Simulink
vers
SIF

Simulink

SIF

H(z) SIFH(z)

C

VHDL

SIF

formats

Algorithme
Virgule Fixe

Génération du code

Logiciel
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graphe Simulink
vers
SIF

Simulink

SIF

H(z) SIFH(z)

C

VHDL

SIF

formats

Algorithme
Virgule Fixe

Génération du code

Logiciel

Bit de poids fort Bit de poids faible

Formats Virgule Fixe
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Représentation d’état
Représentation d’état d’un filtre linéaire H :

H
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

Les conversions entre SIF et représentation d’état sont exactes.

d’état
ReprésentationConversionSIF
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Dynamique des variables
Worst-Case Peak Gain

Entrée u(k) Filtre stable Sortie y(k)

Temps

Am
pl
itu

de

H
Amplification/Atténuation

Am
pl
itu

de

Temps

∀k , |u(k)| ≤ ū ∀k , |y(k)| ≤ 〈〈H〉〉ū

Worst-Case Peak Gain : 〈〈H〉〉 = ‖h‖1 = |d |+
∞∑
k=0

∣∣cAkb
∣∣
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Problème du choix des formats

• Contraintes : largeur wy fixée pour la variable de sortie y

• But : pas de dépassements, borne rigoureuse sur les erreurs

• Bonus : minimiser les erreurs

H
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

Problème : trouver le plus petit my tel que pour tout k

〈〈H〉〉ū =

|y(k)| ≤ 2my
(
1− 2−wy+1

)

Solution mathématique :

my =
⌈

log2 (〈〈H〉〉 ū)− log2

(
1− 21−wy

)⌉

Solution pratique : contrôler la précision du WCPG pour que

0 ≤ m̂y −my ≤ 1
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Rebouclage des erreurs de calcul

Filtre exact H est :

H♦
{

x♦(k + 1) =

♦mx (

Ax♦(k) + bu(k)

)

+ εx (k)
y

♦

(k) =

♦my (

cx

♦

(k) + du(k)

) + εy(k)

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
"y (k)

∂

erreurs de calcul

H⌃
|∆(k)| ≤ 〈〈H∆〉〉

(
2mx−wx+1

2my−wy+1

)
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Rebouclage des erreurs de calcul

Filtre implémenté H♦ est :

H♦
{

x♦(k + 1) = ♦mx (Ax♦(k) + bu(k)) + εx (k)
y♦(k) = ♦my (cx♦(k) + du(k))

+ εy(k)

ou ♦m est un opérateur qui garantit l’arrondi fidèle :

|♦m(x )− x | ≤ 2m−w+1

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
"y (k)

∂

erreurs de calcul

H⌃
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+ εx (k)
y♦(k) =

♦my (
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)

+ εy(k)

avec

|εx (k)| ≤ 2mx−wx+1 et |εy(k)| ≤ 2my−wy+1

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
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Algorithme fiable

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
"y (k)

∂

erreurs de calcul

H⌃

1 Estimation initiale de la position du bit de poids fort my

pour le filtre exact H
2 Prise en compte des erreurs induites par le format choisi

à l’aide du filtre H∆, puis calcul du bit de poids fort m♦y

3 Si m♦y = my , renvoyer m♦y
sinon my ← my + 1 et retourner à l’étape 2
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Exemple numérique
Largeurs : 16 bits
Entrées : ∀k , −1 ≤ u(k) < 1
Formats virgule fixe :

u x1 x2 x3 y

bit de poids fort 0 5 5 5 1
bit de poids faible -15 -10 -10 -10 -14

Borne sur l’erreur : |∆(k)| ≤ 2−9

Temps : 0.012 s
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Retour vers le générateur

Vérification de spécifications

graphe Simulink
vers
SIF

Simulink

SIF

H(z) SIFH(z)

C

VHDL

SIF

formats

Algorithme
Virgule Fixe

Génération du code

Logiciel
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Spécifications fréquentielles
Réponse fréquentielle :

H
(
e jω
)

=
∣∣H
(
e jω
)∣∣

︸ ︷︷ ︸
module

e

phase︷ ︸︸ ︷
]H

(
e jω
)

Spécifications :

�p2

�p1

!s1
!p1

!

��H(ei!)
��

!p2 !s2

�s

⇡

coupe-bande coupe-bandepasse-bande

β ≤
∣∣H (e jω)

∣∣ ≤ β, ∀ω ∈ [ω1, ω2] ⊆ [0, π]
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Vérification d’une implémentation

Vérification
rigoureuse 

de 
spécifications

Filtre implémenté
Booléen

Spécifications
fréquentielles 

Approches existantes :

• par simulations

• réponse fréquentielle
approchée

Notre approche fiable :

• pas de simulation, seulement preuves

• arithmétiques rationnelle et
d’intervalles

But :
• Garantie d’implémentation

• Calcul rapide de cette garantie
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Vérification d’une fonction de

transfert
Nous avons besoin de montrer que ∀z = e jω, ω ∈ Ω ⊆ [0, π]

β ≤ |H (z )| ≤ β

où

|H (z )|2 =
|b(z )|2

|a(z )|2
=

b(z )b(z )

a(z )a(z )
=

b(z )b( 1
z )

a(z )a( 1
z )

=:
v(z )

w(z )
,

v(z ) et w(z ) sont des polynômes à coefficients réels.
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Simplification du problème

β2 ≤ v(z )

w(z )
≤ β2 z = e jω

∀ω ∈ Ω ⊆ [0, π]

↓
t = tan ω

2
∀ω ∈ Ω ⊆ [0, π]
t ∈ [−∞,∞]

↓
ξ = t+2−

√
t2+4

2t
ξ ∈ Ξ ⊆ [0, 1]
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Simplification du problème

β2 ≤ v(z )

w(z )
≤ β2

Pas besoin de gérer les complexes

Changement de variable : t = tan ω
2

z = e jω=
1− t2

1 + t2
+ j

2t

1 + t2

z = e jω

∀ω ∈ Ω ⊆ [0, π]

↓
t = tan ω

2
∀ω ∈ Ω ⊆ [0, π]
t ∈ [−∞,∞]

↓
ξ = t+2−

√
t2+4

2t
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Simplification du problème

β2 ≤ v(z )

w(z )
≤ β2

β2 ≤
v(1−t2

1+t2
+ j 2t

1+t2
)

w(1−t2
1+t2

+ j 2t
1+t2

)
≤ β2

z = e jω

∀ω ∈ Ω ⊆ [0, π]
↓

t = tan ω
2

∀ω ∈ Ω ⊆ [0, π]
t ∈ [−∞,∞]
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Simplification du problème

β2 ≤ v(z )

w(z )
≤ β2

β2 ≤ r(t) + jж(t)

s(t) + jщ(t)︸ ︷︷ ︸
∈R car |H (z )|2

≤ β2

Polynômes r , s,ж,щ ∈ R[t ]

z = e jω

∀ω ∈ Ω ⊆ [0, π]
↓

t = tan ω
2

∀ω ∈ Ω ⊆ [0, π]
t ∈ [−∞,∞]

↓
ξ = t+2−

√
t2+4

2t
ξ ∈ Ξ ⊆ [0, 1]
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Simplification du problème

β2 ≤ v(z )

w(z )
≤ β2

β2 ≤ r(t)

s(t)
≤ β2

Maintenant, on ne travaille qu’avec des réels.

t = tan ω
2 envoie ω sur tout R

Changement de variable : ξ = t+2−
√
t2+4

2t

z = e jω

∀ω ∈ Ω ⊆ [0, π]
↓

t = tan ω
2

∀ω ∈ Ω ⊆ [0, π]
t ∈ [−∞,∞]

↓
ξ = t+2−

√
t2+4

2t
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Simplification du problème

β2 ≤ v(z )

w(z )
≤ β2

β2 ≤ r(t)

s(t)
≤ β2

β2 ≤
r( 1−2ξ

ξ(1−ξ))

s( 1−2ξ
ξ(1−ξ))

≤ β2

z = e jω
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t = tan ω
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Simplification du problème

β2 ≤ v(z )

w(z )
≤ β2

β2 ≤ r(t)

s(t)
≤ β2

β2 ≤ p(ξ)

q(ξ)
≤ β2

z = e jω

∀ω ∈ Ω ⊆ [0, π]
↓

t = tan ω
2

∀ω ∈ Ω ⊆ [0, π]
t ∈ [−∞,∞]

↓
ξ = t+2−

√
t2+4

2t
ξ ∈ Ξ ⊆ [0, 1]
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Même plus simple
Le problème se résume à montrer que ∀ξ ∈ Ξ ⊆ [0, 1]

f (ξ) ≥ 0

avec f ∈ R[ξ] donné par

f (ξ) = q(ξ)2
(
β

2 − β2
)2
−
(
p(ξ)−

(
β2 + β

2
)
q(ξ)

)2

Vérification que f est positif ou nul

Notre algorithme est basé sur :

• la technique de Sturm qui donne
le nombre de zéros réels d’un polynôme

• une subdivision en sous-intervalles

• des évaluations en arithmétique d’intervalles multi-précision
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A. Volkova Implémentation fiable de filtres 25 septembre 2017 24/38



upmc laborato i r e d ’ i n format ique de par i s 6

Algorithme de vérification
La fonction de transfert vérifie-t-elle les spécifications fréquentielles?

Oui Non

�̄

�

!
[ ] [ ] [ ][ ]

!̃1 !̃2 !̃3 !̃4

��H(ej!)
��
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Calcul de la fonction de transfert

Conversion
Implémentation

de filtre
Fonction de 

transfert

!

Fonction de transfert de la représentation d’état :

H (z ) = c(zI − )−1b + d

Nous calculons une approximation Ĥ (z ) de H (z ):

Ĥ (z ) =

∑
i b̂iz

−i
∑

i âiz
−i

� L’erreur
∣∣∣
(
H − Ĥ

)
(ejω)

∣∣∣ peut être rendue arbitrairement petite.

Problème

Il nous faut une borne rigoureuse sur l’erreur
∣∣∣
(
H − Ĥ

)
(ejω)

∣∣∣.
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i âiz
−i

� L’erreur
∣∣∣
(
H − Ĥ
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Comment borner l’erreur
Calcul de la fonction de transfert H (z ) d’une représentation d’état S

H

S
?

Relation entre ∆S et ∆H :
∣∣∣
(
H − Ĥ

)
(e jω)

∣∣∣ ≤ 〈〈∆S〉〉 , ∀ω ∈ [0, 2π]

où 〈〈∆S〉〉 est encore une fois le WCPG du système ∆S.
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H bH

S
?

bS

Transformation de Ĥ vers Ŝ est exacte :

Â =




−â1 1
...

. . .
... 1
−ân 0 . . . 0




b̂ =




b̂1 − â1b̂0
...
...

b̂n − ân b̂0




ĉ =
(
1 0 · · · 0

)
d̂ = b̂0
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)
(e jω)

∣∣∣ ≤ 〈〈∆S〉〉 , ∀ω ∈ [0, 2π]
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Comment borner l’erreur
Calcul de la fonction de transfert H (z ) d’une représentation d’état S

H bH

S
?

bS� = �S
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S

�S

bS

y(k)

by(k)

¢y(k)u(k)
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H − Ĥ
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Évaluation fiable du WCPG
WCPG fiable est nécessaire pour :

• déterminer la dynamique des variables

• analyser l’erreur induite par les calculs en précision finie

• borner l’erreur d’approximation d’une fonction de transfert

Problème dans le cas de filtres MIMO

Calculer S , approximation de la matrice

〈〈H〉〉 = |D |+
∞∑

k=0

∣∣∣CAkB
∣∣∣ ,

telle que pour un ε donné a priori

|〈〈H〉〉 − S | < ε

� Nous utilisons une arithmétique en multi-précision dynamique.
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Borne de troncature
Nous cherchons N tel que l’erreur de troncature vérifie

∣∣∣∣∣
∞∑

k=0

∣∣∣CAkB
∣∣∣ −

N∑

k=0

∣∣∣CAkB
∣∣∣
∣∣∣∣∣ ≤ ε1

Solution mathématique :

N ≥
⌈

log2
ε1

‖M‖min
log2 ρ(A)

⌉

où

M =
∑n

l=1
|Rl |

1−|λl |
|λl |
ρ(A)

(Rl )i ,j = C i ,lB l ,j

Solution pratique :

• Valeurs propres calculées avec LAPACK

• Arithmétique d’intervalles

• Théorie des Inclusions Vérifiées (Rump)
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Évaluation : mise à la puissance

∣∣∣∣∣

N∑

k=0

∣∣∣CAkB
∣∣∣ −→

−
N∑

k=0

∣∣∣CV T kV −1B
∣∣∣
∣∣∣∣∣ ≤ ε2

Nous proposons :

A = X EX−1

d’où Ak = X E kX−1

où
X sont les vecteurs propres

E sont les valeurs propres

En pratique :

V ≈ X et T = V −1AV + ∆

• Opérations en multi-précision avec
la borne de l’erreur donnée a priori

• ∆ est contrôlée pour satisfaire la
borne ε2 sur l’erreur propagée

• ‖T‖2 ≤ 1 vérifié rigoureusement
avec le théorème de Gershgorin
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• ∆ est contrôlée pour satisfaire la
borne ε2 sur l’erreur propagée
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Évaluation : sommation
Nous continuons par analogie

∣∣∣
∑N

k=0

∣∣CV T kV −1B
∣∣−∑N

k=0

∣∣C ′T kB ′
∣∣
∣∣∣ ≤ ε3

∣∣∣
∑N

k=0

∣∣C ′T kB ′
∣∣− ∑N

k=0 |C ′PkB ′|
∣∣∣ ≤ ε4

∣∣∣
∑N

k=0 |C ′PkB ′| −∑N
k=0 |Lk |

∣∣∣ ≤ ε5

∣∣∣
∑N

k=0 |Lk | − SN

∣∣∣ ≤ ε6

� Trois briques de base : X Y + Z , X + |Y |, X−1
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Exemple de vérification en

fréquence
Une implémentation de notre filtre-exemple :
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1

z−1

-1 z−1

+ + z−1 + -1

+ 0.5
y(k)

γ1 = 89 · 2−8

γ2 = 43 · 2−7

γ3 = 11 · 2−7

Les spécifications :

{
10

1
20 ≤

∣∣H (ejω)
∣∣ ≤ 10

3
20 ∀ω ∈ [0, 1

10π] (passe-bande)∣∣H (ejω)
∣∣ ≤ 10−

20
20 ∀ω ∈ [ 3

10π, π] (coupe-bande)

Résultat : X le filtre implémenté respecte les spécifications.
Temps de vérification : 1.9 s
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Exemple de vérification

Pendant ces 1.9 secondes...
• Arithmétique rationnelle

• Réécriture de H (z ) en f (ξ)
• Calcul de suites de Sturm

• Arithmétique d’intervalles
• Inclusions vérifiées de valeurs propres
• Borne de troncature N

• Arithmétique multi-précision dynamique
• Calcul de cercles de Gershgorin
• Évaluation du WCPG

• Arithmétique virgule flottante IEEE 754
• Calcul de valeurs propres avec LAPACK

. . . pour vérifier une implémentation en virgule fixe !
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En résumé

Vérification de spécifications

graphe Simulink
vers
SIF

Simulink

SIF

H(z) SIFH(z)
vers
SIF

C

VHDL

SIF

formats

Algorithme
Virgule Fixe

Génération du code

Logiciel

FPGA

ASIC

• Nous avons rendu l’implémentation de filtres fiable et
automatique

• Utilisation rigoureuse d’arithmétiques diverses
• Implémentations virgule fixe vérifiant des bornes

d’erreur a priori et en fréquentiel et en temporel

• Nous avons étendu la châıne d’outils du générateur de filtres
• Nouvelles conversions depuis d’autres formats d’entrée
• Branchement avec FloPoCo pour l’implémentation FPGA
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Développement de logiciels

Vérification de spécifications

graphe Simulink
vers
SIF

Simulink

SIF

H(z) SIFH(z)
vers
SIF

C

VHDL

SIF

formats

Algorithme
Virgule Fixe

Génération du code

Logiciel

FPGA

ASIC

• Outils open-source

• Implémentation en C/C++, Sollya,
Python et Matlab

• ≈ 15000 lignes de code

• Génération de VHDL avec FloPoCo

F XI FI
TOOLBOX
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Perspectives : demain à 9h00...

Vérification de spécifications

graphe Simulink
vers
SIF

Simulink

SIF

H(z) SIFH(z)
vers
SIF

C

VHDL

SIF

formats

Algorithme
Virgule Fixe

Génération du code

Logiciel

FPGA

ASIC

• Gagner un peu de place
• Résoudre le problème « off-by-one » (0 ≤ m̂y −my ≤ 1)

• Gagner plus de place
• Prendre en compte des propriétés supplémentaires des signaux

d’entrée (propriétés spectrales)

• Étudier divers algorithmes selon plusieurs métriques
• LUTs, surface
• précision
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Perspectives : moyen terme

Vérification de spécifications

graphe Simulink
vers
SIF

Simulink

SIF

H(z) SIFH(z)
vers
SIF

C

VHDL

SIF

formats

Algorithme
Virgule Fixe

Génération du code

Logiciel

FPGA

ASIC

• Implémentation de filtres fiables
• Intégrer les méthodes de conception des fonctions de transfert
• Relâcher les contraintes de spécifications fréquentielles

• Outils arithmétiques
• Calculer des valeurs propres d’une matrice en précision variée
• Résoudre des équations de Lyapunov, etc.

• Optimisation
• Entourer le générateur avec des boucles d’optimisation
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Perspectives : long terme

Vérification de spécifications

graphe Simulink
vers
SIF

Simulink

SIF

H(z) SIFH(z)
vers
SIF

C

VHDL

SIF

formats

Algorithme
Virgule Fixe

Génération du code

Logiciel

FPGA

ASIC

• Côté arithmétique
• Outils numériques pour l’algèbre linéaire
• Évaluation des approximations rationnelles

• Côté arithmétique pour le traitement du signal
• Concevoir la fonction de transfert avec les meilleurs

coefficients quantifiés
• Considérer les filtres non-linéaires, Kalman, etc.

A. Volkova Implémentation fiable de filtres 25 septembre 2017 38/38



Merci

Thank you

Спасибо

Дякую



upmc laborato i r e d ’ i n format ique de par i s 6
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SIF
A MIMO LTI system in SIF representation is characterized by




J 0 0
−K I n 0
−L 0 I p






t(k + 1)
x (k + 1)

y(k)


 =




0 M N
0 P Q
0 R S






t(k)
x (k)
u(k)




By rewriting we obtain





Jt(k + 1) = M x (k) + N u(k)
x (k + 1) = Kt(k + 1) + Px (k) + Qu(k)

y(k) = Lt(k + 1) + Rx (k) + Su(k)
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Lattice Wave Digital Filters

z�1

�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�2

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

Stage nStage 3

�6

�5 �2·n�1

�2·n

OUT1INP1

z�1

�0

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�3

�4

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�2·(n�1)

�2·(n�1)�1

Stage 0

Stage 2 Stage (n� 1)

+

Low-pass

Input

n =
N � 1

2

1/2

1/2

+

�1

High-pass

Stage 1
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The error filter H∆

Denote

ε(k) =

(
εx (k)
εy(k)

)

∆x (k) = x♦(k)− x (k)

∆y(k) = y♦(k)− y(k)

Then, the filter H∆ = H−H♦ is

H∆

{
∆x (k + 1) = A∆x (k) +

(
I 0

)
ε(k)

∆y(k) = C∆x (k) +
(

0 I
)
ε(k)
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Worst-Case Peak Gain
Sensitive real-life filter

Input: A highly sensitive 5th order transfer function from
industrial application1.
Problem: given inputs from interval [−1.125; 1.125], determine
the interval for output variables.
Result:

• Naive WCPG, i.e. summing 1000 terms in double precision:
ȳ = 1.6238497× 1.125 = 0.8693 . . .

• Our WCPG with ε = 2−53:
ȳ = 1.9997191× 1.125 = 1.1697 . . .

1Obtained from Xilinx
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Worst-Case Peak Gain
Random filter

Input: Consider a stable 5th order random SISO filter
Problem: given inputs from interval [−1; 1), determine the
interval for output variables.
Result:

• Naive WCPG (1000 terms in double precision) ȳ = 105.66...

• Our WCPG with ε = 2−53: ȳ = 772.48...

0 400 800 1,200 1,600 2,000
−200

−100

0

100

200

k

y
(k
)

naive bound
worst-case output
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Worst-Case Peak Gain
Examples

Example 1: comes from Control Theory, describes a controller of
vehicle longitudinal oscillation
Example 2: 12th-order Butterworth filter

Example 1 Example 2

sizes n, p and q n = 10, p = 11, q = 1 n = 12, p = 1, q = 25
1− ρ(A) 1.39× 10−2 8.65× 10−3

max(SN ) 3.88× 101 5.50× 109

min(SN ) 1.29× 100 1.0× 100

ε 2−5 2−53 2−600 2−5 2−53 2−600

N 220 2153 29182 308 4141 47811
Inversion iterations 0 2 4 2 3 5

overall max precision (bits) 212 293 1401 254 355 1459
V −1 max precision (bits) 106 173 727 148 204 756
PN max precision (bits) 64 84 639 64 86 640
SN max precision (bits) 64 79 630 64 107 658

Overall execution time (sec) 0.11 1.53 60.06 0.85 11.54 473.20
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Transfer Function of a State-Space
Transfer function of a single-input single-output state-space S:

H (z ) = c(zI −A)−1b + d

Using the eigendecomposition A = XEX−1:

H (z ) =
P(z )

Q(z )
+ d

P(z ) =

n∑

i=1

(cX )i(X
−1b)i

∏

j 6=i

(z − λj )

Q(z ) =

n∏

j=1

(z − λj )

We compute an approximation Ĥ (z ) in Multiple Precision
arithmetic with mpmath.
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Verification of non-negativity
To verify f (ξ) ≥ 0, ∀ξ ∈ Ξ = [ξ1, ξ2] ⊆ [0, 1] we check if

(i) f (ξ) has no zeros
f (ξ′) > 0 for some ξ′ ∈ [ξ1, ξ2]

⇠1 ⇠2⇠0

(ii) f (ξ) has one zero
f (ξ1) > 0 and f (ξ2) > 0 ⇠1 ⇠2⇠00

(iii) interval Ξ can be split into subintervals
s.t. (i) or (ii) are satisfied for every
subinterval

⇠1 ⇠2⇠3

⌅1 ⌅2

We use Sollya tool for the implementation

• Number of zeros: Sturm’s theorem

• Evaluations: interval multiple precision arithmetic
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Verification of specifications
Sturm’s technique

Sturm’s sequence is a sequence of polynomials p0(x ), . . . , pm(x ):

p0(x ) = p(x )

p1(x ) = p′(x )

p2(x ) = −rem(p0, p1) = p1(x )q0(x )− p0(x ),

p3(x ) = −rem(p1, p2) = p2(x )q1(x )− p1(x ),

. . .

0 = −rem(pm−1, pm)
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Verification of specifications
Numerical examples

Input: four realizations of the same filter
Problem: verify realizations after coefficient quantization to
32/16/8 bits
Results:

wordlength 32 16 8

DFIIt
margin X unstable unstable

time 12.49s - -

ρ DFIIt
margin X X 4.68e-3 dB

time 13.12s 4.19s 104.01s

State-Space

Balanced

margin 6.16e-10 dB X 6.71e-1 dB

time 12.27s 18.18s 92.05s

Lattice Wave
margin 3.80e-10 dB X 1.73e-2 dB

time 920.88s 4.58s 200.83s
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Verification of specifications
Numerical examples

Input: four simple frequency specifications
Problem: Verify and compare transfer function design methods.
Results: comparison of SciPy in Python and Matlab

Butterworth Chebyshev Elliptic

margin (dB) margin (dB) margin (dB)

lowpass
Matlab 1.29e-17 7.93e-17 X
SciPy 2.14e-15 4.48e-2 4.48e-2

highpass
Matlab 2.77e-16 6.94e-17 4.48e-2
SciPy 3.02e-15 2.29e-16 4.48e-2

bandpass
Matlab 3.04e-17 X X
SciPy X 4.48e-2 4.48e-2

bandstop
Matlab 4.59e-16 3.09e-15 X
SciPy X 6.36e-15 7.02e-6
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Verification of specifications
Numerical examples

Filter implementation: 14th order bandpass filter
Specifications:





∣∣H (eiω)
∣∣ ≤ −80dB ∀ω ∈ [0, 17kHz] (stopband)

0dB ≤
∣∣H (eiω)

∣∣ ≤ 1− 10−4dB ∀ω ∈ [21kHz, 25kHz] (passband)∣∣H (eiω)
∣∣ ≤ −80dB ∀ω ∈ [27kHz, 30kHz] (stopband)

Verification result: implemented filter does not pass the
verification against frequency constraints
Verification time: 53 s
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Binding with FloPoCo
FloPoCo:

Figure: Interface to a Sum-Of-Product-by-Constant generator

Our tool: we deduce a lower bound on the error of computation
of each Sum-of-Product s.t. the error-bound on the filter’s output
is respected.

• Push-button

• Can implement any
structure

• No need to quantize
coefficients

• Reliable
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Worst-Case Peak Gain
Powering matrix A

(

N∑

k=0

∣∣CAkB
∣∣ −→−

N∑

k=0

∣∣CV T kV−1B
∣∣(≤ ε2

× = cancellation

× = less cancellation

A = XEX−1 V ≈ X and T ≈ E

T ≈ V−1 ×A×V

Ak ≈ V ×T k ×V−1

A. Volkova Implémentation fiable de filtres 25 septembre 2017 53/38



upmc laborato i r e d ’ i n format ique de par i s 6

Worst-Case Peak Gain
Step 3

∣∣∣∣∣
N∑

k=0

∣∣CV T kV−1B
∣∣ −

N∑

k=0

∣∣C ′T kB ′
∣∣
∣∣∣∣∣ ≤ ε3

Step 3 Compute the products CV and V−1B such that the
propagated error of matrix multiplications is bounded
by ε3.

∞∑
k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CV TkV−1B
∣∣∣

↓
N∑

k=0

∣∣∣C ′TkB′
∣∣∣

↓
N∑

k=0

∣∣C ′PkB′
∣∣

↓
N∑

k=0
|Lk |

↓
SN
↓
↓
↓
↓
↓
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Worst-Case Peak Gain
Step 4

∣∣∣∣∣
N∑

k=0

∣∣C ′T kB ′
∣∣ −

N∑

k=0

|C ′PkB ′|
∣∣∣∣∣ ≤ ε4

P0 := I

Pk := T ⊗Pk−1

Step 4 Compute the powers Pk of matrix T such that the
propagated error of matrix multiplications is bounded
by ε4.

∞∑
k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CV TkV−1B
∣∣∣

↓
N∑

k=0

∣∣∣C ′TkB′
∣∣∣

↓
N∑

k=0

∣∣C ′PkB′
∣∣

↓
N∑

k=0
|Lk |

↓
SN
↓
↓
↓
↓
↓
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Worst-Case Peak Gain
Step 5

∣∣∣∣∣
N∑

k=0

|C ′PkB ′| −
N∑

k=0

|Lk |
∣∣∣∣∣ ≤ ε5

Lk := C ′ ⊗ (Pk ⊗B ′)

Step 5 Compute on each step the matrix product C ′T kB ′

such the overall error of these multiplications on each
step is bounded by ε5.

∞∑
k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CV TkV−1B
∣∣∣

↓
N∑

k=0

∣∣∣C ′TkB′
∣∣∣

↓
N∑

k=0

∣∣C ′PkB′
∣∣

↓

N∑
k=0

|Lk |

↓
SN
↓
↓
↓
↓
↓

A. Volkova Implémentation fiable de filtres 25 septembre 2017 56/38



upmc laborato i r e d ’ i n format ique de par i s 6
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Worst-Case Peak Gain
Step 6

∣∣∣∣∣
N∑

k=0

|Lk | − SN

∣∣∣∣∣ ≤ ε6

Sk := Sk−1 ⊕ |Lk |

Step 6 Compute the absolute value of matrix and accumulate
it in the result such that the error is bounded by ε6.

∞∑
k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CV TkV−1B
∣∣∣

↓
N∑

k=0

∣∣∣C ′TkB′
∣∣∣

↓
N∑

k=0

∣∣C ′PkB′
∣∣

↓
N∑

k=0
|Lk |

↓
SN
↓
↓
↓
↓
↓
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Worst-Case Peak Gain
Algorithm

Taking εi = 1
6ε we obtain that ε1 + ε2 + . . .+ ε6 ≤ ε hence the

overall error bound is satisfied.

A floating-point evaluation of the WCPG:

Step 1: Compute N
Step 2: Compute V

T ← inv(V )⊗ (A⊗V )
Step 3: B ′ ← inv(V )⊗B

C ′ ← C ⊗V
S−1 ← |D |, P−1 ← I n

for k from 0 to N do:
Step 4: Pk ← T ⊗Pk−1

Step 5: Lk ← C ′ ⊗ (Pk ⊗B ′)
Step 6: S k ← S k−1 ⊕ abs(Lk )
Step 6: end for
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Worst-Case Peak Gain
Basic bricks

• multiplyAndAdd(A,B ,C , δ): for A ∈ Cp×n , B ∈ Cn×q ,
C ∈ Cp×q , computes a matrix D ∈ Cp×q such that

D = A ·B + C + ∆,

where the error-matrix ∆ is bounded by |∆| < δ, for a
certain scalar absolute error bound δ, given in argument to
the algorithm.

The algorithm performs an error-free scalar multiplication and uses
a modified software-implemented Kulisch-like accumulator.
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Worst-Case Peak Gain
Basic bricks

• sumAbs(A,B , δ): for A ∈ Rp×n , B ∈ Cp×n , computes a
matrix C ∈ Rp×n such that

C = A + |B |+ ∆,

where the error matrix ∆ is bounded by |∆| < δ, for a certain
scalar absolute error bound δ, given in argument to the
algorithm.
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Worst-Case Peak Gain
Basic bricks

• inv(V , δ): for a complex square matrix V ∈ Cn×n ,
computes a matrix U ∈ Cn×n such that

U = V −1 + ∆,

where the error matrix ∆ is bounded by |∆| < δ, for a certain
scalar absolute error bound δ, given in argument to the
algorithm.

The algorithm is based on Newton-Raphson matrix iteration,
requires a seed matrix in argument and works on certain
conditions, easily verified in our case.
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Worst-Case Peak Gain
Basic bricks

• frobeniusNormUpperBound(A, δ): for A ∈ Cp×n computes
f an upper bound on the Frobenius norm of A such that

f = ‖A‖F + γ

where 0 ≤ γ < δ, for a certain scalar absolute error bound δ,
given in argument to the algorithm.
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Interval Worst-Case Peak Gain

Given a state-space system H = ([A], [B ], [C ], [D ]), compute an
approximation S on the WCPG

〈〈H〉〉 = |[D ]|+
∞∑

k=0

∣∣∣[C ][A]k [B ]
∣∣∣

such that two properties are ensured:

• bound property: 〈〈H〉〉 ≤ S element-by-element;

• if coefficients’ radii → 0 and precision →∞ then the exact
〈〈H〉〉 is contained in an ε neighborhood of the approximation
S for an a priori given small ε > 0.
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Interval Worst-Case Peak Gain
Computing the eigensystem of interval matrix

Eigenvalues of interval matrix

Compute enclosures λI such that ∀A ∈ AI ,λ(A) ∈ λI

Approach

Following the works of Xu and Rachid (1996) and Rohn(1998), use
the Generalized Gershgorin’s Circles theorem.

Eigenvectors of interval matrix

Given the enclosures on eigenvalues λI , compute enclosures V I

such that ∀λ ∈ λI , ∀A ∈ AI if Aλ = AV , then V ∈ V I .

Approach

Use Rump’s theory of Verified Inclusions.
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