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Signals are everywhere

e Analog signals: continuous-time
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Applications: reliable systems

Digital filters:

Algorithms that transform digital signals

e Do not need guarantee in the majority of applications

_—_—

e A guarantee is necessary in other applications.
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Applications: reliable systems

Digital filters:

Algorithms that transform digital signals
e Do not need guarantee in the majority of applications

MWWM @

e A guarantee is necessary in other applications.

We are interested in guarantees related to the implementation of
numerical algorithms, especially in the embedded systems.
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Automation

The implementation is done in several steps:

Constraints
>

Software

Mathematlcal Numerical
» algorithm algorithm generation
Specifications \/
Numerous constraints:
e performance e energy consumption
e surface ® memory
® accuracy e etc.

We are interested in the automated process of reliable
implementation.
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Filters

Frequency domain

A N

U(z) u(k) y(k) Y(2)

H A

Linear Time-Invariant filters H: transformation of spectral properties

Transfer function H(z), z € C 4
|H ()]

n biz_i
H(z) = Zz_g —
1+ zi=1 a; 27"
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Filters

Time domain

© y(k) = 3 boulk =) = 3 (k= 1)
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Filters

Time domain

© y(k) = 3 boulk =) = 3 (k= 1)

Ax(k) + bu(k)
cx(k)+ du(k)
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Filters

Time domain

* y(k) = & bk = 1) - ¥ ay(k - 1)
. { z(k+1) = Az(k)+ bu(k)
y(k) = cx(k)+ du(k)
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Filters

Time domain
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Typical algorithm: input u(k), internal state = (%), output y(k)

Mathematically speaking, different algorithms compute the same
output.
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Numerical algorithms
Choice of the arithmetic and its parameters determines the
numerical quality of the implemented algorithm.

Why?

o the signals are discrete in their value

e the instructions for the evaluation can
induce errors

e the propagation and compensation of
errors depend on the instructions
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Numerical algorithms

Choice of the arithmetic and its parameters determines the
numerical quality of the implemented algorithm.

Why?

e the signals are discrete in their value

e the instructions for the evaluation can
induce errors

e the propagation and compensation of
errors depend on the instructions
In addition, choice of the arithmetic and its parameters influence:

e the speed of computations

e the surface
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Arithmetics

2w—1 20
e Integer arithmetic:

e [TTTTT]

1 V)
K w 2
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Arithmetics

e Integer arithmetic:

y=7Y

e Fixed-Point arithmetic:
where £ is an implicit factor

A. Volkova
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Arithmetics
2w—1 20
e Integer arithmetic: _
Y= Y K w 3
o Fixed-Point arithmetic: —2m 20971 2
y=. [ —,
where ¢ is an implicit factor fml o — =t
e Floating-Point arithmetic: | . | | | | | | | | |

y=(-1)7- V.2
where e is an explicit factor

K exponent ¢—— mantissa —
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Arithmetics

Integer arithmetic:

Fixed-Point arithmetic:

where £ is an implicit factor
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2w—1 20
K w l

—om 20 9-1 22

!é—m-‘rl—w—w —Z—zll:

Floating-Point arithmetic:

Hl

y=(-1)7- V.2
where e is an explicit factor

Interval arithmetic:
[y, 9l={yeR|y<y<7}

Reliable implementation of digital filtres
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Arithmetics
2w—1 20
e Integer arithmetic: _
y=Y K w |

o Fixed-Point arithmetic: —2m 2027 2

. . .. 41— 7
where £ is an implicit factor = w —

e Floating-Point arithmetic: s| | [ ] ] ] ] ] ]

— S e
Yy = (_1) -Y -2 K exponent Yk—— mantissa —
where e is an explicit factor

e [nterval arithmetic:
[y, 9l={yeR|y<y<7}

e Multiple-Precision arithmetic: the size
of the mantissa varies dynamically
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Arithmetics

e Fixed-Point arithmetic:
y=1Y- ot For the implementation

where £ is an implicit factor

e Floating-Point arithmetic:
y=(-1)°-Y-2° For the error analysis
where e is an explicit factor

e [nterval arithmetic:

v, 7] = {y ER|y<y< ?} For the error analysis

e Multiple-Precision arithmetic: the size

of the mantissa varies dynamically Far e Elvor 2zl
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Towards reliable implementation
of digital filters

SIF ) c
H(z) SIF »  Code generation |y
% to Fixed-Point
SIF algorithm | formats_

Before this work

o A unified representation of linear filters (SIF)
— Numerous algorithms were manually converted to SIF

o Fixed-Point implementation: unified, but not reliable

e Code generation: C for the software
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Towards reliable implementation
of digital filters

H(z) SIF
&) to SIF C

Code generation

SIF >
_@ Fixed-Point
algorithm | formats_

SIF »

y

Simulink

Simulink
graph to

SIF @

o A unified representation of linear filters (SIF)

— Numerous algorithms were manually converted to SIF
— Additional input formats

o Fixed-Point implementation: unified, but not reliable

e Code generation: C for the software
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Towards reliable implementation
of digital filters

&. SIF c
»  Code generation |
Fixed-Point

algorithm | formats_

LNl

Simulink

graph

o A unified representation of linear filters (SIF)

— Numerous algorithms were manually converted to SIF
— Additional input formats

o Fixed-Point implementation: unified, reliableq

e Code generation: C for the software
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Towards reliable implementation
of digital filters

% SIF c
»  Code generation |
Fixed-Point

algorithm | formats
®
rel

v

e

o A unified representation of linear filters (SIF)

— Numerous algorithms were manually converted to SIF
— Additional input formats

Simulink

graph

o Fixed-Point implementation: unified, reliable 9 and verified

e Code generation: C for the software
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Towards reliable implementation
of digital filters

RGN SIF —1c
»  Code generation |
Fixed-Point
algorithm | formats VHDL
Simulink > FPGA p—
@ —®

graph

v

e

o A unified representation of linear filters (SIF)

— Numerous algorithms were manually converted to SIF
— Additional input formats

o Fixed-Point implementation: unified, reliable 9 and verified
e Code generation: C for the software, VHDL for the FPGAs
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UPMC

Towards reliable implementation
of digital filters

H(z) SIF
% to = SIF . C
SIF ) . »  Code generation |
Fixed-Point
_— algorithm formats VHDL
Simulink Simulink SIF e v "
e © - \9) _@

‘ v

o A unified representation of linear filters (SIF)
— Numerous algorithms were manually converted to SIF
— Additional input formats

o Fixed-Point implementation: unified, reliable 9 and verified
e Code generation: C for the software, VHDL for the FPGAs

September 25, 2017
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Additional input formats

SIF
:(OIN SIF c

Code generation
Fixed-Point Software

algorithm | formats
Simulink SIF
)

graph

Reliable implementation of digital filtres September 25, 2017



UPMC LABORATOIRE D'INFORMATIQUE DE PARIS 6

SIF: Specialized Implicit form

e Matrix form based on a system of linear equations.
=" Different from the graph-based form

e Order of computations is expressed in the equations

e Any LTI filter can be expressed in SIF.
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SIF: Specialized Implicit form

e Matrix form based on a system of linear equations.
=" Different from the graph-based form

e Order of computations is expressed in the equations

e Any LTI filter can be expressed in SIF.

Y = mamiu
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SIF: Specialized Implicit form

e Matrix form based on a system of linear equations.
=" Different from the graph-based form

e Order of computations is expressed in the equations

e Any LTI filter can be expressed in SIF.

y «— ma(myu)
1o t+— mu
20y +— mat
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SIF: Specialized Implicit form

e Matrix form based on a system of linear equations.
=" Different from the graph-based form

e Order of computations is expressed in the equations

e Any LTI filter can be expressed in SIF.

y — ma(myu)

1 t+— mu 1 0 t _ (i u
2.y +— mot —my 1 Y 0
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SIF: Specialized Implicit form

e Matrix form based on a system of linear equations.
=" Different from the graph-based form

e Order of computations is expressed in the equations

e Any LTI filter can be expressed in SIF.

y +— ma(miu)
1 t+— mu 1 0 t _ (i u
2.y +— mat —my 1 Y 0

Contributions:

o Conversion of Lattice Wave Digital Filters to SIF

e Automatic conversion of Simulink graphs to SIF
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Conversion of a Simulink graph

Simulink:
(k)

N/
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Conversion of a Simulink graph

Simulink:
u(k)

>
'I/

71 =89-278 1, =43-277 4, =11-27"

Key idea of our conversion algorithm:

e l|dentification of inputs, outputs, states, intermediate variables

e Construction of equations

e Topological sort
e Exact copy of the coefficients
September 25, 2017  11/38
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Conversion of a Simulink graph

Simulink: SIF:
u(k) _’1\
1T [@=] o o)
o 0
ooo

71 =89-278 1, =43-277 4, =11-27"

Key idea of our conversion algorithm:

e l|dentification of inputs, outputs, states, intermediate variables

e Construction of equations

e Topological sort
e Exact copy of the coefficients
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A. Volkova Reliable implementation of digital filtres



Conversion of a Simulink graph

uS(k!mulink: SIF:

>
'I/

7 =89-278 1, =43.277 4y =11.277

Key idea of our conversion algorithm:

e l|dentification of inputs, outputs, states, intermediate variables

e Construction of equations

e Topological sort
e Exact copy of the coefficients
September 25, 2017  11/38
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Reliable numerical algorithms

H(z) H(z) SIF

to SIF : c
SIF Code generation
Software
. . formats
Simulink Sl SIF
raph to
o SIF
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Reliable numerical algorithms

H(z) SIF
to SIF ) c
SIF Code generation

H(z)

Software
formats

Simulink SIF

Simulink
to
SIF

graph

Most Significant Bit Least Significant Bit

-
—
N—
N

Fixed-Point format
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State-space representation

State-space representation of an LTI filter H:

z(k+1) = Az(k)+ bu(k)
H { y(k) = ca(k) + du(k)

Conversions between SIF and state-space are exact.

SIF Conversion State-Space
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UPMC

Range of variables
Worst-Case Peak Gain

Input u(k) Stable filter Output y(k)
Temps ] H - Temps
Amplification/Attenuation
vk, |u(k)] < @ Yk, |y(k)| < ((H))a

Worst-Case Peak Gain: ((H)) = ||h], = |d| + X |cA"b|
k=0

September 25, 2017 14/38
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Problem of the format choice

e Constraints: wordlength w, is fixed for the output variable y
e But: no overflows, rigorous error bounds

e Bonus: minimize the errors
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Problem of the format choice

e Constraints: wordlength w, is fixed for the output variable y
e But: no overflows, rigorous error bounds
e Bonus: minimize the errors
H{ z(k+1) = Axz(k)+ bu(k)
y(k) = cx(k)+ du(k)
Problem: find the smallest MSB position m, such that for all &
ly(k)] < 2™ (1—27wth)
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Problem of the format choice

e Constraints: wordlength w, is fixed for the output variable y
e But: no overflows, rigorous error bounds

e Bonus: minimize the errors

z(k+1) = Az(k)+ bu(k)
H{ y(k) = ca(k)+ du(k)

Problem: find the smallest MSB position m, such that for all &
((H)u = [y(k)| < 2m (1—27w")
Mathematical solution:
my = [logy ({(H)) @) —log, (1 —2'7")]
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Problem of the format choice

e Constraints: wordlength w, is fixed for the output variable y
e But: no overflows, rigorous error bounds

e Bonus: minimize the errors

z(k+1) = Az(k)+ bu(k)
H{ y(k) = ca(k)+ dulk)

Problem: find the smallest MSB position m, such that for all &
(H)u = |y(k)| < 2™ (1—27wth)
Mathematical solution:
my = [logy (((H)) @) —logy (1 —2'7)]
Practical solution: control the accuracy of the WCPG such that

0<my—my <1
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Propagation of the rounding errors
Exact filter H is:

xz (k+1) = Az (k) + bu(k)
H { y (k) = cx (k) + du(k)
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Propagation of the rounding errors

Implemented filter # is:

’HO{ 2Ok +1) = O, (Az(k) + bu(k))
yO(k) = Om,(cx®(k) + du(k))

where ¢, is an operator guaranteeing the faithful rounding:

|<>m($) o m,| < 2m—w+1
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Propagation of the rounding errors

Implemented filter # is:

240 z0(k+1) = AzO (k) 4+ bu(k) + e.(k)
yO(k) = ez (k) + du(k) +e,(k)

with

|Ez(k)| < 2mx—’lDz+1 and |5y(k)| < me—wy—l—l

u(k)
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Reliable algorithm

u(k)

© Initial estimation of the MSB m,, for the exact filter H

® Taking into account the errors induced by the initial formats
with the help of the filter 2 A, then computation of the new
MSB mg

e If mg = my, return mg
else my <— my + 1 and return to the step 2.
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Numerical example

Wordlengths: 16 bits
Input: Vk, —1 < u(k) <1
Fixed-Point formats:
| U ol T2 3 Y
most significant bit positions 0 5 5 5 1
least significant bit positions -15 -10 -10 -10 -14

Error bound: |A(k)| <279
Time: 0.012 s
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Back to the generator

H(z) SIF
Fixed-Point
algorithm
Simulink SIF
graph
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Frequency specifications

Frequency response:

phase

H () = |1 (e%)] <H (&)

—_———
magnitude
Specifications:
|H ()]
/8112 i AR m
ﬁ%l ]

Bs

Wsy Wpy  Wpy Ws, 7T

stop-band pass-band stop-band

B [H()| <B, Vw € fwi,w] C[0,7]
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Verification of an implementation

Implemented filter
Boolean
——
Frequency
specifications
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Verification of an implementation
Implemented filter
Boolean
—)
Frequency
specifications
Existing approaches: Our reliable approach:
e by simulations e no simulations, only proofs
e approximation of the e rational and interval arithmetic
frequency response
Goal:

e Guarantee upon an implementation

e Fast computation of this guarantee
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Verification of a transfer function

We need to show that Vz = /¥ w € Q C [0, 7]

B<|H(2)| < B
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Verification of a transfer function

We need to show that Vz = /¥ w € Q C [0, 7]

B<|HRP <F
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Verification of a transfer function

We need to show that Vz = /% w € Q C [0, 7]
g <|HEP <F

_BEIP _b(E) b)) u()
(z) a(z)e(z)

v(z) and w(z) are polynomials with real coefficients.

s
—~
N
=

[\
s}
—
N
~—
s}
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Simplifying the problem

2 _ v(z) _ 2 z=e¥
p Sw(z)sﬂ Yw € Q C [0, 7]
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Simplifying the problem

2 _ v(z) _ 2 z=e¥
p Sw(z)gﬂ Yw € Q C [0, 7]

No need to deal with complex numbers

Change of variable: ¢ = tan
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Simplifying the problem

82 < v(z) 7 z=e¥
= T w(z) T Yw € Q C [0, 7]
. 1
w28 42ty t=tan%
< o <P Vw € Q C [0, 7]
w(iFe +ite) t € [—o0, 0]

A. Volkova
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Simplifying the problem

2 v(z) _ 2 z = el
p Sw(z)gﬂ Yw € Q C [0, 7]
1
o _ () +ix(t) _ 22 t = tan ¥
B s S s jm =P Yw e QC [0,1]
_’_F/ t € [—o0, 0]

€R since |H(z)

Polynomials r, s, x, 11 € R[¢]
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Simplifying the problem

o _ v(z) _ 22 2z =¥

p Sw(z)gﬂ Yw € Q C [0, 7]
1

5 () =2 t=tan¥

Py s? Yw e QC [0,1]

t € [—o0, 0]

Now we work only with reals

t = tan 5 maps w on the whole R

Change of variable: £ = W
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Simplifying the problem

<P

v
B2 <

z=e¥
Yw € Q C [0, 7]
1
t=tang
Yw € Q C [0, 7]
t € [—o0, 0]
1
€= 1+2—Vt2+4 \/tz_
Ee=C [0 1]

September 25, 2017 23/38
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Simplifying the problem

P <F

r(t) -2
g2sm§ﬂ
2 @ 72
ééq(f)gﬁ

We compute the PGCD(p, ¢) with a rigorous
heuristics by Char et al.

z=e¥
Yw € Q C [0, 7]
1
t=tang
Yw € Q C [0, 7]
t € [—o0, 0]
1
£= 1+2—Vt2+4 \/tz_
Ee=C [0 1]
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Even simpler

The problem boils down to showing that V¢ € = C [0, 1]

f(€) =0
with f € R[{] given by

2

1(©) = a2 (7~ 82) ~ (p(0) — (8 +7°) a(®))
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L]
Even simpler

The problem boils down to showing that V¢ € E C [0, 1]

f(€) =0
with f € R[] given by

2

1O =@ (7~ 8) ~ (00— (82 +7) 0©))”

Verification that f is positive or zero

Our algorithm is based on:

e the Sturm’s technique that gives the number of real roots of a
polynomial

e a subdivision on sub-intervals

e evaluations in Multiple-Precision Interval Arithmetic

A. Volkova Reliable implementation of digital filtres September 25, 2017 24/38
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Verification algorithm

Does the transfer function verify the frequency specifications?

Yes No
[H ()
2 N \u/
—t——F—t+—+t3F++t+—
(211 LZ): @3 (:’4 @
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Computing the transfer function

Implemented
filter
—-

Transfer
function

a
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Computing the transfer function

Implemented Transfer
filter SIF . State-space X function
— -~ Conversion ... Conversion

Transfer function of a state-space:
H(z)=c(zI —A)'b+d
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Computing the transfer function

Transfer

Implemented
function

filter SIF State-space
| CONVEISION || CONVEISION | CoNVersion

—® —w @

Transfer function of a state-space:
Hz) =c(zI-XEX Y 'b+d

We compute an approximation H(z) of H(z):

~ Z@iz_i
R

BS" The error ‘(H — I?) (ej‘*’)‘ may be arbitrarily small.

A. Volkova Reliable implementation of digital filtres September 25, 2017



Computing the transfer function

Transfer

Implemented
function

filter SIF State-space
| CONVEISION i CONVENSION | Conversion

—® —v —@®
Transfer function of a state-space:
Hz) =c(zI-XEX Y 'b+d

We compute an approximation H(z) of H(z):

~ Z@iz_i
H(z) =S5 =

BS" The error ‘(H — I?) (ej“’)‘ may be arbitrarily small.

We need a rigorous bound on the error ’(H - I/-:T) (ej‘*’)’.
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How to bound the error

Computing the transfer function H(z) of the state-space system S:

S
?
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How to bound the error

Computing the transfer function H(z) of the state-space system S:
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How to bound the error

Computing the transfer function H(z) of the state-space system S:

s. S
\ AN
H H

Transformation from H to S is exact:

—61 1 b1 — 31 bo
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How to bound the error

Computing the transfer function H(z) of the state-space system S:

S.— § = as
)
H H

The difference of two filters is defined as:
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How to bound the error

Computing the transfer function H(z) of the state-space system S:

N

H — H = AH
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How to bound the error

Computing the transfer function H(z) of the state-space system S:

s.— §
)
H — H = AH

= AS

Relationship between AS and AH:
‘(H - Er) (ejw)’ < ((AS)), Vw € [0,27]

where ((AS)) is again the WCPG of the system AS.
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Reliable evaluation of the WCPG
Reliable WCPG is required for:

e determination of the range of variables

e analysis of the errors induced by finite-precision computations

e bounding the error of the approximation of the transfer
function
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Reliable evaluation of the WCPG
Reliable WCPG is required for:

e determination of the range of variables
e analysis of the errors induced by finite-precision computations

e bounding the error of the approximation of the transfer
function

Problem in the case of MIMO filters

Compute S, approximation of the matrix

(H)) = D]+ ‘CA’“B
k=0
such that for an a priori given &

[{({(H)) =S| <e

)

IS” We use the dynamic Multiple-Precision arithmetic.
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Truncation bound

We determine N such that the truncation error verifies

oo N
|Z jca'B| - Y |ca'B| <=
k=0 k=0
Mathematical solution: Practical solution:
e Eigenvalues computed with LAPACK
N> | 182 Dl
= | TTog, p(A) e Interval Arithmetic
e Theory of Verified Inclusions (Rump)
where
no R A
M =3 0 ot
(Ri)ij = CiiBu,
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Evaluation: powering

N
> |cas]

k=0
We propose:
A=XEX!

thus, A* = XEFX!

where
X are the eigenvectors

E are the eigenvalues
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Evaluation: powering

N N
>|eats| - Y|evriviip| <s
k=0 =0
We propose: In practice:
A=XEX! VaX et T=V3IAV+A

E_ Ey—1
g, 2 = 208 e Multiple precision operations with

a priori given error bound

where _ e A is controlled to satisfy the
X are the eigenvectors bound €2 on the propagated error
E are the eigenvalues o |||, <1 rigorously verified with

the Gershgorin theorem
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Evaluation: summation
We proceed by analogy

S levrivipl -S| B

<e3

S e B~ Y, |C'PBY| < e

‘Zszo |C'P.B'| - Eszo |Lk|‘ <es

‘Zszo |Ly| — SN‘ <eg

1" Three basic bricks: XY + Z, X +|Y|, X !
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Example of frequency domain
verification

An implementation of our example filter:
u(k)

Y1 =89.2°8
Y2 =43.277
Ny = 11277

| < 10% Vwel0 : 7] (passe-bande)
|H(e’)| < 1072 Vw € [Zm, 7] (coupe-bande)

Result: v implemented filter respects the specifications
Verification time: 1.9 s
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Behind the scenes

During these 1.9 seconds...

e Rational arithmetic

o Rewriting H(z) as f(&)

e Computation of Sturm sequences
e [nterval arithmetic

o Verified Inclusions for the eigenvalues
e Truncation bound for N

e Dynamic Multiple-Precision arithmetic

o Computation of Gershgorin circles
e Evaluation du WCPG

e Floating-Point IEEE 754 arithmetic
o Computation of eigenvalues with LAPACK

... to verify an implementation in Fixed-Point arithmetic!
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Conclusion
RGN Iﬁ,m S SIF c

Code generation

SIF
Fixed-Point Softw: ASIC
CQ) algorithm | formats_ = VHDL
—_——

v

Simulink [ g i | SIF fé > Q
graph St?F A \J :-:

A

—\é

e We made filter implementation reliable and automatic
e Rigorous use of various arithmetics
o Fixed-Point implementations that verify a priori error bounds
in both frequency and time domains
e We extended the tool-chain of the filter code generator

e New conversions from various input formats
o Plugged in with the FloPoCo tool for FPGA implementations
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Tool development

RGN SIF —1¢
»  Code generation |
Fixed-Point Software
algorithm formats VHDL
Simulink > FPGA p—)>
@ —®

graph

v

e

e Open-source tool
e Implementation in C/C++, Sollya,
Python and Matlab I I
e =~ 15000 lines of code TOOLBOX

Generation of VHDL with FloPoCo
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Perspectives: tomorrow at 9h00...

RGN SIF —1¢
»  Code generation |
Fixed-Point Software
algorithm formats VHDL
Simulink > FPGA —)

R —®

v

e

e Win some space
¢ Solve the “off-by-one” problem (0 < m,, — m, < 1)
e Win more space
o Take into account additional properties of input signals
(spectral properties)
e Study various algorithms with respect to different metrics
e LUTs, surface
e accuracy

graph
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Perspectives: moyen terme
RGN Iﬁf] S SIF c

Code generation

SIF
Fixed-Point Softw: ASIC
CQ) algorithm | formats_ = VHDL
—_——

v

Simulink [ g i | SIF @ > Q
graph St?F A \J ::

A

—\é

e Reliable implementation of digital filters

o Integrate methods of the transfer function design
o Relax the frequency-domain constraints

e Arithmetic tools

e Computation of eigenvalues in varying precision
e Solution of Lyapunov equations, etc.

e Optimization

e Wrap-up the generator with optimization loops

A. Volkova
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Perspectives: long term

RGN SIF —1¢
»  Code generation |
Fixed-Point
algorithm formats VHDL
Simulink > FPGA —)

R —®

v

e

e Computer Arithmetic side

o Reliable numerical tools for linear algebra
o Evaluation of rational approximations

graph

e Signal Processing side
e Design the transfer functions with the best quantized
coefficients
o Consider non-linear filters, Kalman filters, etc.
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SIF

A MIMO LTI system in SIF representation is characterized by

J 0 0\ [tlk+1) 0 M N\ [t(k)
-K I, O z(k+1)| =0 P Q@ x (k)
-L 0 I, y(k) 0 R S u(k)

By rewriting we obtain

Jt(k+1) = Mx(k) + Nu(k)
z(k+1) = Ktk+1) + Px(k) + Qu(k)
y(k) = Lt(k+1) + Rxz(k) + Su(k)
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Lattice Wave Digital Filters

Stage 0

Stage 2

Stage (n — 1)

Y2-(n—1)

e ot

Yo

NP1 ouTi

e ouTt

{

i

Input

out2 e

INPL OUTL

Y21

NPT OUTI
out2 NP2

[T NPT ouTn NP ouTT
72 6 Y2m
Stage 1 Stage 3 Stage n

1/2
L
Low-pass
N1
T2
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The error filter H,

Denote

Then, the filter Ha = H — HO is

Ay(k+1) = AAL(K)
HA{ AK) = CAL)
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Worst-Case Peak Gain

Sensitive real-life filter

Input: A highly sensitive 5" order transfer function from
industrial application®.
Problem: given inputs from interval [—1.125;1.125], determine
the interval for output variables.
Result:
e Naive WCPG, i.e. summing 1000 terms in double precision:
y = 1.6238497 x 1.125 = 0.8693. ..

e Our WCPG with ¢ = 2753:
y =1.9997191 x 1.125 = 1.1697. ..

1Obtained from Xilinx
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Worst-Case Peak Gain

Random filter

Input: Consider a stable 5" order random SISO filter
Problem: given inputs from interval [—1;1), determine the
interval for output variables.
Result:
» Naive WCPG (1000 terms in double precision) y = 105.66...
o Our WCPG with ¢ = 2753 5 = 772.48...

200 T T T
—— naive bound
—— worst-case output

y(k)

—100 £

72000 400 800 1,200 1,600 2,000

k
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Worst-Case Peak Gain

Random filter

Input: Consider a stable 5" order random SISO filter
Problem: given inputs from interval [—1;1), determine the
interval for output variables.

Result:

e Naive WCPG (1000 terms in double precision) 3 = 105.66.

o Our WCPG with ¢ = 2753 5 = 772.48...

o 800
s
=
o 600
=
a
3
'g 400 |-
=
E
§ 200 f
oy
o
< . . . .
1 2 3 4 5
Truncation order -10*

A. Volkova Reliable implementation of digital filtres September 25, 2017

LABORATOIRE D'INFORMATIQUE DE PARIS 6

44 /38



A. Volkova

UPMC LABORATOIRE D'INFORMATIQUE DE PARIS 6

Worst-Case Peak Gain

Examples

Example 1: comes from Control Theory, describes a controller of
vehicle longitudinal oscillation
Example 2: 12th-order Butterworth filter

Example 1 Example 2
sizesn,pand ¢ n=10, p=11, ¢=1 n=12, p=1, ¢=25

1—p(A) 1.39 x 1072 8.65 x 1073

max(Sy) 3.88 x 10! 5.50 x 10°

min(Sy) 1.29 x 10° 1.0 x 10°
c 2-5 2-53 9—600 2-5 9-53 9—600
N 220 2153 29182 308 4141 47811
Inversion iterations 0 2 4 2 3 5
overall max precision (bits) 212 293 1401 254 355 1459
V ~1 max precision (bits) 106 173 727 148 204 756
P max precision (bits) 64 84 639 64 86 640
S n max precision (bits) 64 79 630 64 107 658
Overall execution time (sec) 0.11 1.53 60.06 0.85 11.54 473.20

Reliable implementation of digital filtres

September 25, 2017
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Transfer Function of a State-Space

Transfer function of a single-input single-output state-space S:
H(z)=c(zI —A)7'b+d
Using the eigendecomposition A = XEX ~!:

P(2)

H(z) 00) +d

P(z) =) (eX)i(X7'b); [J(z = N)
i=1 i

Q(z) =[]¢=-M)
j=1

We compute an approximation fI(z) in Multiple Precision
arithmetic with mpmath.
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Verification of non-negativity
To verify f(§) > 0, V¢ € 2 = [£1,&2] C [0, 1] we check if

(1) f(€) has no zeros
(&) > 0 for some &' € [&1,&2]

(i) f(&) has one zero M

;

f(&) >0and f(&) >0 A &
(iii) interval = can be split into subintervals w

s.t. (i) or (ii) are satisfied for every & & &

subinterval = E

We use Sollya tool for the implementation

e Number of zeros: Sturm's theorem

e Evaluations: interval multiple precision arithmetic
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Verification of specifications
Sturm’s technique

Sturm’s sequence is a sequence of polynomials py(z),. .., pm(z):

po(z) = p(z)
pi(z) =p'(z)
pa(w) = —rem(po, p1) = p1(z)q(z) — po(7),
p3(w) = —rem(p1, p2) = p2(z) @ () — p1(7),

0= —rem(pm_l, pm)
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Verification of specifications

Numerical examples
Input: four realizations of the same filter
Problem: verify realizations after coefficient quantization to
32/16/8 bits

Results:
wordlength 32 16 8
margin v unstable  unstable
DFII _—
t time 12.49s - -
margin v v 4.68e-3 dB
DFIlt _—
P time 13.12s 419s  104.01s
State-Space  margin 6.16e-10 dB v 6.71e-1 dB
Balanced time 12.27s 18.18s 92.05s
. margin 3.80e-10 dB v 1.73e-2 dB
Lattice W. _—
attice TIave —ime 920.88s 4585  200.83s
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Verification of specifications

Numerical examples
Input: four simple frequency specifications
Problem: Verify and compare transfer function design methods.
Results: comparison of SciPy in Python and Matlab

Butterworth  Chebyshev Elliptic
margin (dB) margin (dB) margin (dB)
lowpass I\/Ia.tlab 1.29e-17 7.93e-17 v
SciPy 2.14e-15 4.48e-2 4.48e-2
highpass I\/Ia.tlab 2.77e-16 6.94e-17 4.48e-2
SciPy 3.02e-15 2.29e-16 4.48e-2
bandpass I\/Ia.tlab 3.04e-17 v v
SciPy v 4.48e-2 4.48e-2
Matlab 4.59%-16 3.09e-15 v
bandstop

SciPy v 6.36e-15 7.02e-6
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Verification of specifications
Numerical examples

Filter implementation: 14" order bandpass filter

Specifications:
H(ew)| < —80dB  Vw € [0, 17kHZ] (stopband)
0dB < |H(e™)| < 1-10"%dB VYw € [21kHz, 25kHz] (passband)
H(ew)| < —80dB  Vw € [27kHz, 30kHz] (stopband)

Verification result: implemented filter does not pass the
verification against frequency constraints
Verification time: 53 s
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Verification of specifications
Numerical examples

Filter implementation: 14" order bandpass filter
Verification result: implemented filter does not pass the
verification against frequency constraints

Verification time: 53 s

Frequency response:

Amplitude, dB
|
=
3

0 7 21 B2 3
Frequency, kHz
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Verification of specifications
Numerical examples

Filter implementation: 14" order bandpass filter
Verification result: implemented filter does not pass the
verification against frequency constraints

Verification time: 53 s
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Verification of specifications

Numerical examples

Filter implementation: 14" order bandpass filter
Verification result: implemented filter does not pass the
verification against frequency constraints

Verification time: 53 s

Frequency response:

Amplitude, dB

1 . 225 25 e
21 22 23 24 25
Frequency, kHz
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Binding with FloPoCo

FloPoCo:

constants SOPC

input formats architecture .vhdl
generator

output format

Figure: Interface to a Sum-Of-Product-by-Constant generator

Our tool: we deduce a lower bound on the error of computation
of each Sum-of-Product s.t. the error-bound on the filter’s output
is respected.

e Push-button e No need to quantize
e Can implement any coefficients
structure e Reliable
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Worst-Case Peak Gain

Powering matrix A

N

S lca's|

k=0

= . cancellation

less cancellation

Va~Xand T~ FE

TV IiIxAxV

Ar =2V x Tk x v—1
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Worst-Case Peak Gain

Step 3
N N
dMlevrtv Bl - Y |C'T*B'|| <es
k=0 k=0

Step 3 Compute the products C' V and V!B such that the
propagated error of matrix multiplications is bounded
by e3.

S |cats|
k=0
5" |ca*B|
k=0
5 ’CVT’“V_IB‘
k=0

5 |c’ TkB’|
k=0
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Worst-Case Peak Gain

Step 4
S |cats|
N N k=0 .
M |e'TtiB |~ M |C'PuB|| <& & |oats
k=0 k=0 k=0 N

5 ’CVT’“V_IB‘
k=0

PO =1 g: |C'TkB’|
P, =TQ®P,_1 k=0
12\,) |c’'P,B’|
k=0

Step 4 Compute the powers Py, of matrix T such that the
propagated error of matrix multiplications is bounded
by Eq.
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Worst-Case Peak Gain

Step 5
N N
S IC'PB| - Y |Lil| <es
k=0 k=0

Ly = Cl®(Pk®BI)

Step 5 Compute on each step the matrix product C’' T* B’
such the overall error of these multiplications on each
step is bounded by €5.

S |cats|
k=0
5" |ca*B|
k=0
> ’CVT’“V_IB‘
k=0
S |C’TkB’|
k=0

N
> |¢'PpB|
k=0
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Worst-Case Peak Gain

Step 5
S |cats|
N N k=0 .
Z|C/PkB/| — Z|Lk| <es %|CA’“B|
k=0 k=0 k=0 .

> ’CVT’“V_IB‘
k=0

Ly = Cl®(Pk®BI)

S |C’ TkB’|
k=0

N
k¥O|C’PkB’|
Step 5 Compute on each step the matrix product C’' T* B’ -
such the overall error of these multiplications on each SRl
k=0

step is bounded by €5.
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Worst-Case Peak Gain

Step 6
S |cats|
N k=0 .
Z|Lk| — Sn| <es 5 |ca*s|
k=0 =0

5 ’CVT’“V_IB‘
k=0

Sk := Sk—1 D |Ly]|

5 |C’ TkB’|
k=0

N
k¥O|C’PkB’|
Step 6 Compute the absolute value of matrix and accumulate IR
it in the result such that the error is bounded by &g. SRl
k=0
1
SN
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Worst-Case Peak Gain
Algorithm

Taking ¢; = %8 we obtain that 1 + 9 + ... + g6 < € hence the
overall error bound is satisfied.

A floating-point evaluation of the WCPG:
Step 1: Compute N
Step 2: Compute V
T+—inv(V)R(A® V)
Step3: B+ inv(V)® B
C'+~C®V
S_1 — |D|, P_1 — In
for k& from 0 to N do:
Step 4: P+ TP,
Step5: Ly + C'® (Pr® B')
Step 6: Sy < Sy_1 @ abs(Ly)
end for
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Worst-Case Peak Gain

Basic bricks

e multiplyAndAdd(A, B, C,J): for A € CP*", B € C"*1,
C € CP*4, computes a matrix D € CP*? such that

D=A-B+C+A,

where the error-matrix A is bounded by |A| < 4, for a
certain scalar absolute error bound §, given in argument to
the algorithm.

The algorithm performs an error-free scalar multiplication and uses
a modified software-implemented Kulisch-like accumulator.
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Worst-Case Peak Gain

Basic bricks

e sumAbs(A, B,0): for A € RP*", B € CP*™ computes a
matrix C € RP*™ such that

C=A+|B|+A,

where the error matrix A is bounded by |A| < ¢, for a certain
scalar absolute error bound 6, given in argument to the
algorithm.
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Worst-Case Peak Gain

Basic bricks

e inv(V,0): for a complex square matrix V € C"*",
computes a matrix U € C™*™ such that

U=V '14+A,

where the error matrix A is bounded by |A| < ¢, for a certain
scalar absolute error bound 6, given in argument to the
algorithm.

The algorithm is based on Newton-Raphson matrix iteration,
requires a seed matrix in argument and works on certain
conditions, easily verified in our case.
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Worst-Case Peak Gain

Basic bricks

e frobeniusNormUpperBound(A,d): for A € CP*" computes
f an upper bound on the Frobenius norm of A such that

f=1Alp+~

where 0 < v < §, for a certain scalar absolute error bound 6,
given in argument to the algorithm.
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Interval Worst-Case Peak Gain

Given a state-space system H = ([A], [B], [C],[D]), compute an
approximation S on the WCPG

(1)) = 11D]| + Y |[C]lA]" B]|
k=0

such that two properties are ensured:
* bound property: ((#)) < S element-by-element;

o if coefficients’' radii — 0 and precision — oo then the exact
((H)) is contained in an & neighborhood of the approximation
S for an a priori given small £ > 0.
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Interval Worst-Case Peak Gain
Computing the eigensystem of interval matrix

Eigenvalues of interval matrix

Compute enclosures AT such that VA € AT, A(A) € AT

Approach
Following the works of Xu and Rachid (1996) and Rohn(1998), use
the Generalized Gershgorin's Circles theorem.

Eigenvectors of interval matrix

Given the enclosures on eigenvalues A%, compute enclosures V'
such that YA € AT,VA € AT if AN= AV, then V € VL.

Approach

Use Rump's theory of Verified Inclusions.
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