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Signals are everywhere

• Analog signals: continuous-time

Time

• Digital signals: discrete-time

Time
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Applications: reliable systems

Digital filters:

Algorithms that transform digital signals

• Do not need guarantee in the majority of applications

• A guarantee is necessary in other applications.

We are interested in guarantees related to the implementation of
numerical algorithms, especially in the embedded systems.
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Automation
The implementation is done in several steps:

Specifications

Constraints
SoftwareNumerical 

algorithm
Code 

generation
Mathematical

algorithm

Numerous constraints:

• performance

• surface

• accuracy

• energy consumption

• memory

• etc.

We are interested in the automated process of reliable
implementation.
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Filters
Frequency domain

u(k) y(k)H Y (z)U(z)

Linear Time-Invariant filters H: transformation of spectral properties

Transfer function H (z ), z ∈ C

H (z ) =

∑n
i=0 biz

−i

1 +
∑n

i=1 aiz
−i

!

��H(ej!)
��
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Filters
Time domain

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k) y(k)

• y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

•
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

• . . .

Typical algorithm: input u(k), internal state x (k), output y(k)

Mathematically speaking, different algorithms compute the same
output.

A. Volkova Reliable implementation of digital filtres September 25, 2017 5/38



upmc laborato i r e d ’ i n format ique de par i s 6

Filters
Time domain

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k)
B + z�1 C +

y(k)

D

A

• y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

•
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

• . . .

Typical algorithm: input u(k), internal state x (k), output y(k)

Mathematically speaking, different algorithms compute the same
output.

A. Volkova Reliable implementation of digital filtres September 25, 2017 5/38



upmc laborato i r e d ’ i n format ique de par i s 6

Filters
Time domain

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k)
B + z�1 C +

y(k)

D

A

+

z�1

+

z�1

+

z�1

+

b0

b1

bi

bn

�a1

�ai

�an

y(k)u(k)

• y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

•
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

• . . .

Typical algorithm: input u(k), internal state x (k), output y(k)

Mathematically speaking, different algorithms compute the same
output.

A. Volkova Reliable implementation of digital filtres September 25, 2017 5/38



upmc laborato i r e d ’ i n format ique de par i s 6

Filters
Time domain

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k)
B + z�1 C +

y(k)

D

A

+

z�1

+

z�1

+

z�1

+

b0

b1

bi

bn

�a1

�ai

�an

y(k)u(k)

u(k)
-1 + +

+ -1 -1

�1 + �2 + -1 �3 +

-1

z�1

-1 z�1

+ + z�1 + -1

+ 0.5
y(k)

• y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

•
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

• . . .

Typical algorithm: input u(k), internal state x (k), output y(k)

Mathematically speaking, different algorithms compute the same
output.

A. Volkova Reliable implementation of digital filtres September 25, 2017 5/38



upmc laborato i r e d ’ i n format ique de par i s 6

Numerical algorithms

Choice of the arithmetic and its parameters determines the
numerical quality of the implemented algorithm.

Why?

• the signals are discrete in their value

• the instructions for the evaluation can
induce errors

• the propagation and compensation of
errors depend on the instructions

In addition, choice of the arithmetic and its parameters influence:

• the speed of computations

• the surface

• ...
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Arithmetics

• Integer arithmetic:
y = Y w

2w−1 20

• Fixed-Point arithmetic:
y = Y · 2`
where ` is an implicit factor

• Floating-Point arithmetic:
y = (−1)s ·Y · 2e
where e is an explicit factor

• Interval arithmetic:
[y , y ] =

{
y ∈ R | y ≤ y ≤ y

}

• Multiple-Precision arithmetic: the size
of the mantissa varies dynamically
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Arithmetics

• Integer arithmetic:
y = Y

• Fixed-Point arithmetic:
y = Y · 2`
where ` is an implicit factor

For the implementation

• Floating-Point arithmetic:
y = (−1)s ·Y · 2e
where e is an explicit factor

For the error analysis

• Interval arithmetic:
[y , y ] =
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Towards reliable implementation
of digital filters

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software

Before this work

• A unified representation of linear filters (SIF)

– Numerous algorithms were manually converted to SIF

– Additional input formats

• Fixed-Point implementation: unified, but not reliable

• Code generation: C for the software
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Additional input formats

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
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Fixed-Point
algorithm

Code generation
C
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SIF: Specialized Implicit form

• Matrix form based on a system of linear equations.

� Different from the graph-based form

• Order of computations is expressed in the equations

• Any LTI filter can be expressed in SIF.

Basic idea:

y = m2m1u

1: t ←− m1u
2: y ←− m2t

(
1 0
−m2 1

)(
t
y

)
=

(
m1

0

)
u

Contributions:
• Conversion of Lattice Wave Digital Filters to SIF

• Automatic conversion of Simulink graphs to SIF
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Conversion of a Simulink graph

Simulink:
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1

z−1

-1 z−1

+ + z−1 + -1

+ 0.5
y(k)

γ1 = 89 · 2−8, γ2 = 43 · 2−7, γ3 = 11 · 2−7

SIF:

Key idea of our conversion algorithm:

• Identification of inputs, outputs, states, intermediate variables

• Construction of equations

• Topological sort

• Exact copy of the coefficients
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Reliable numerical algorithms

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software
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Reliable numerical algorithms

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software

Most Significant Bit Least Significant Bit

Fixed-Point format
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State-space representation
State-space representation of an LTI filter H:

H
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

Conversions between SIF and state-space are exact.

State-SpaceConversionSIF
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Range of variables
Worst-Case Peak Gain

Input u(k) Stable filter Output y(k)

Temps

Am
pl
itu

de

H
Amplification/Attenuation

Am
pl
itu

de

Temps

∀k , |u(k)| ≤ ū ∀k , |y(k)| ≤ 〈〈H〉〉ū

Worst-Case Peak Gain: 〈〈H〉〉 = ‖h‖1 = |d |+
∞∑
k=0

∣∣cAkb
∣∣
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Problem of the format choice

• Constraints: wordlength wy is fixed for the output variable y

• But: no overflows, rigorous error bounds

• Bonus: minimize the errors

H
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

Problem: find the smallest MSB position my such that for all k

〈〈H〉〉ū =

|y(k)| ≤ 2my
(
1− 2−wy+1

)

Mathematical solution:

my =
⌈

log2 (〈〈H〉〉 ū)− log2

(
1− 21−wy

)⌉

Practical solution: control the accuracy of the WCPG such that

0 ≤ m̂y −my ≤ 1

A. Volkova Reliable implementation of digital filtres September 25, 2017 15/38
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(
1− 21−wy

)⌉

Practical solution: control the accuracy of the WCPG such that

0 ≤ m̂y −my ≤ 1

A. Volkova Reliable implementation of digital filtres September 25, 2017 15/38



upmc laborato i r e d ’ i n format ique de par i s 6

Problem of the format choice

• Constraints: wordlength wy is fixed for the output variable y

• But: no overflows, rigorous error bounds

• Bonus: minimize the errors

H
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

Problem: find the smallest MSB position my such that for all k
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Propagation of the rounding errors

Exact filter H is:

H♦
{

x♦(k + 1) =

♦mx (

Ax♦(k) + bu(k)

)

+ εx (k)
y

♦

(k) =

♦my (

cx

♦

(k) + du(k)

) + εy(k)

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
"y (k)

∂

rounding errors

H⌃
|∆(k)| ≤ 〈〈H∆〉〉

(
2mx−wx+1

2my−wy+1

)
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Reliable algorithm

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
"y (k)

∂

rounding errors

H⌃

1 Initial estimation of the MSB my for the exact filter H
2 Taking into account the errors induced by the initial formats

with the help of the filter H∆, then computation of the new
MSB m♦y

3 If m♦y = my , return m♦y
else my ← my + 1 and return to the step 2.
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Numerical example
Wordlengths: 16 bits
Input: ∀k , −1 ≤ u(k) < 1
Fixed-Point formats:

u x1 x2 x3 y

most significant bit positions 0 5 5 5 1
least significant bit positions -15 -10 -10 -10 -14

Error bound: |∆(k)| ≤ 2−9

Time: 0.012 s
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Back to the generator

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software
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Frequency specifications
Frequency response:

H
(
e jω
)

=
∣∣H
(
e jω
)∣∣

︸ ︷︷ ︸
magnitude

e

phase︷ ︸︸ ︷
]H

(
e jω
)

Specifications:

�p2

�p1

!s1
!p1

!

��H(ei!)
��

!p2 !s2

�s

⇡

stop-band        pass-band     stop-band

β ≤
∣∣H (e jω)

∣∣ ≤ β, ∀ω ∈ [ω1, ω2] ⊆ [0, π]

A. Volkova Reliable implementation of digital filtres September 25, 2017 20/38



upmc laborato i r e d ’ i n format ique de par i s 6

Verification of an implementation

Rigorous 
verification 
against the 

specifications

Implemented filter
Boolean

Frequency
specifications 

Existing approaches:

• by simulations

• approximation of the
frequency response

Our reliable approach:

• no simulations, only proofs

• rational and interval arithmetic

Goal:
• Guarantee upon an implementation

• Fast computation of this guarantee
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Verification of a transfer function
We need to show that ∀z = e jω, ω ∈ Ω ⊆ [0, π]

β ≤ |H (z )| ≤ β

where

|H (z )|2 =
|b(z )|2

|a(z )|2
=

b(z )b(z )

a(z )a(z )
=

b(z )b( 1
z )

a(z )a( 1
z )

=:
v(z )

w(z )
,

v(z ) and w(z ) are polynomials with real coefficients.
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Simplifying the problem

β2 ≤ v(z )

w(z )
≤ β2 z = e jω

∀ω ∈ Ω ⊆ [0, π]

↓
t = tan ω

2
∀ω ∈ Ω ⊆ [0, π]
t ∈ [−∞,∞]

↓
ξ = t+2−

√
t2+4

2t
ξ ∈ Ξ ⊆ [0, 1]
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β2 ≤ v(z )

w(z )
≤ β2

No need to deal with complex numbers

Change of variable: t = tan ω
2

z = e jω=
1− t2

1 + t2
+ j

2t

1 + t2
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β2 ≤ v(z )

w(z )
≤ β2

β2 ≤
v(1−t2

1+t2
+ j 2t

1+t2
)

w(1−t2
1+t2

+ j 2t
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Simplifying the problem

β2 ≤ v(z )

w(z )
≤ β2

β2 ≤ r(t) + jж(t)

s(t) + jщ(t)︸ ︷︷ ︸
∈R since |H (z )|2

≤ β2

Polynomials r , s,ж,щ ∈ R[t ]

z = e jω

∀ω ∈ Ω ⊆ [0, π]
↓

t = tan ω
2

∀ω ∈ Ω ⊆ [0, π]
t ∈ [−∞,∞]

↓
ξ = t+2−

√
t2+4

2t
ξ ∈ Ξ ⊆ [0, 1]
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Simplifying the problem

β2 ≤ v(z )

w(z )
≤ β2

β2 ≤ r(t)

s(t)
≤ β2

Now we work only with reals

t = tan ω
2 maps ω on the whole R

Change of variable: ξ = t+2−
√
t2+4

2t

z = e jω
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t = tan ω
2

∀ω ∈ Ω ⊆ [0, π]
t ∈ [−∞,∞]

↓
ξ = t+2−

√
t2+4

2t
ξ ∈ Ξ ⊆ [0, 1]

A. Volkova Reliable implementation of digital filtres September 25, 2017 23/38



upmc laborato i r e d ’ i n format ique de par i s 6
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ξ(1−ξ))
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Simplifying the problem

β2 ≤ v(z )

w(z )
≤ β2

β2 ≤ r(t)

s(t)
≤ β2

β2 ≤ p(ξ)

q(ξ)
≤ β2

We compute the PGCD(p, q) with a rigorous
heuristics by Char et al.

z = e jω

∀ω ∈ Ω ⊆ [0, π]
↓

t = tan ω
2

∀ω ∈ Ω ⊆ [0, π]
t ∈ [−∞,∞]

↓
ξ = t+2−

√
t2+4

2t
ξ ∈ Ξ ⊆ [0, 1]
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Even simpler
The problem boils down to showing that ∀ξ ∈ Ξ ⊆ [0, 1]

f (ξ) ≥ 0

with f ∈ R[ξ] given by

f (ξ) = q(ξ)2
(
β

2 − β2
)2
−
(
p(ξ)−

(
β2 + β

2
)
q(ξ)

)2

Verification that f is positive or zero

Our algorithm is based on:

• the Sturm’s technique that gives the number of real roots of a
polynomial

• a subdivision on sub-intervals

• evaluations in Multiple-Precision Interval Arithmetic
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Verification algorithm
Does the transfer function verify the frequency specifications?

Yes No

�̄

�

!
[ ] [ ] [ ][ ]

!̃1 !̃2 !̃3 !̃4

��H(ej!)
��
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Computing the transfer function

Conversion

Implemented
filter

Transfer 
function

!

Transfer function of a state-space:

H (z ) = c(zI − )−1b + d

We compute an approximation Ĥ (z ) of H (z ):

Ĥ (z ) =

∑
i b̂iz

−i
∑

i âiz
−i

� The error
∣∣∣
(
H − Ĥ

)
(ejω)

∣∣∣ may be arbitrarily small.

Problem:

We need a rigorous bound on the error
∣∣∣
(
H − Ĥ

)
(ejω)

∣∣∣.
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Computing the transfer function
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SIF State-spaceImplemented

filter
Transfer
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function

Conversion Conversion

!

Transfer function of a state-space:

H (z ) = c(zI −XEX−1)−1b + d

We compute an approximation Ĥ (z ) of H (z ):
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How to bound the error
Computing the transfer function H (z ) of the state-space system S:

H

S
?

Relationship between ∆S and ∆H :

∣∣∣
(
H − Ĥ

)
(e jω)

∣∣∣ ≤ 〈〈∆S〉〉 , ∀ω ∈ [0, 2π]

where 〈〈∆S〉〉 is again the WCPG of the system ∆S.
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How to bound the error
Computing the transfer function H (z ) of the state-space system S:

H bH

S
?

bS

Transformation from Ĥ to Ŝ is exact:

Â =




−â1 1
...

. . .
... 1
−ân 0 . . . 0




b̂ =




b̂1 − â1b̂0
...
...

b̂n − ân b̂0




ĉ =
(
1 0 · · · 0

)
d̂ = b̂0

Relationship between ∆S and ∆H :∣∣∣
(
H − Ĥ

)
(e jω)
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How to bound the error
Computing the transfer function H (z ) of the state-space system S:

H bH

S
?

bS� = �S

The difference of two filters is defined as:

S

�S

bS

y(k)

by(k)

¢y(k)u(k)
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)
(e jω)

∣∣∣ ≤ 〈〈∆S〉〉 , ∀ω ∈ [0, 2π]

where 〈〈∆S〉〉 is again the WCPG of the system ∆S.

A. Volkova Reliable implementation of digital filtres September 25, 2017 27/38



upmc laborato i r e d ’ i n format ique de par i s 6

Reliable evaluation of the WCPG
Reliable WCPG is required for:

• determination of the range of variables

• analysis of the errors induced by finite-precision computations

• bounding the error of the approximation of the transfer
function

Problem in the case of MIMO filters

Compute S , approximation of the matrix

〈〈H〉〉 = |D |+
∞∑

k=0

∣∣∣CAkB
∣∣∣ ,

such that for an a priori given ε

|〈〈H〉〉 − S | < ε

� We use the dynamic Multiple-Precision arithmetic.
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Truncation bound
We determine N such that the truncation error verifies

∣∣∣∣∣
∞∑

k=0

∣∣∣CAkB
∣∣∣ −

N∑

k=0

∣∣∣CAkB
∣∣∣
∣∣∣∣∣ ≤ ε1

Mathematical solution:

N ≥
⌈

log2
ε1

‖M‖min
log2 ρ(A)

⌉

where

M =
∑n

l=1
|Rl |

1−|λl |
|λl |
ρ(A)

(Rl )i ,j = C i ,lB l ,j

Practical solution:

• Eigenvalues computed with LAPACK

• Interval Arithmetic

• Theory of Verified Inclusions (Rump)
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Evaluation: powering

∣∣∣∣∣

N∑

k=0

∣∣∣CAkB
∣∣∣ −→

−
N∑

k=0

∣∣∣CVT kV −1B
∣∣∣
∣∣∣∣∣ ≤ ε2

We propose:

A = XEX−1

thus, Ak = XE kX−1

where
X are the eigenvectors

E are the eigenvalues

In practice:

V ≈ X et T = V −1AV + ∆

• Multiple precision operations with
a priori given error bound

• ∆ is controlled to satisfy the
bound ε2 on the propagated error

• ‖T‖2 ≤ 1 rigorously verified with
the Gershgorin theorem
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• ‖T‖2 ≤ 1 rigorously verified with
the Gershgorin theorem

A. Volkova Reliable implementation of digital filtres September 25, 2017 30/38



upmc laborato i r e d ’ i n format ique de par i s 6

Evaluation: summation
We proceed by analogy

∣∣∣
∑N

k=0

∣∣CVT kV −1B
∣∣−∑N

k=0

∣∣C ′T kB ′
∣∣
∣∣∣ ≤ ε3

∣∣∣
∑N

k=0

∣∣C ′T kB ′
∣∣− ∑N

k=0 |C ′PkB
′|
∣∣∣ ≤ ε4

∣∣∣
∑N

k=0 |C ′PkB
′| −∑N

k=0 |Lk |
∣∣∣ ≤ ε5

∣∣∣
∑N

k=0 |Lk | − SN

∣∣∣ ≤ ε6

� Three basic bricks: XY + Z , X + |Y |, X−1
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Example of frequency domain
verification

An implementation of our example filter:
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1

z−1

-1 z−1

+ + z−1 + -1

+ 0.5
y(k)

γ1 = 89 · 2−8

γ2 = 43 · 2−7

γ3 = 11 · 2−7

Specifications:

{
10

1
20 ≤

∣∣H (ejω)
∣∣ ≤ 10

3
20 ∀ω ∈ [0, 1

10π] (passe-bande)∣∣H (ejω)
∣∣ ≤ 10−

20
20 ∀ω ∈ [ 3

10π, π] (coupe-bande)

Result: X implemented filter respects the specifications
Verification time: 1.9 s
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Behind the scenes

During these 1.9 seconds...

• Rational arithmetic
• Rewriting H (z ) as f (ξ)
• Computation of Sturm sequences

• Interval arithmetic
• Verified Inclusions for the eigenvalues
• Truncation bound for N

• Dynamic Multiple-Precision arithmetic
• Computation of Gershgorin circles
• Evaluation du WCPG

• Floating-Point IEEE 754 arithmetic
• Computation of eigenvalues with LAPACK

. . . to verify an implementation in Fixed-Point arithmetic!
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Conclusion
H(z)

H(z)
to

SIF

formats

SIF

Simulink
to

SIF

Fixed-Point
algorithm

Code generation

Verification against specifications

C

VHDLSoftware ASIC

FPGASimulink

graph

SIF

SIF

• We made filter implementation reliable and automatic
• Rigorous use of various arithmetics
• Fixed-Point implementations that verify a priori error bounds

in both frequency and time domains

• We extended the tool-chain of the filter code generator
• New conversions from various input formats
• Plugged in with the FloPoCo tool for FPGA implementations
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Tool development
H(z)

H(z)
to

SIF

formats

SIF

Simulink
to

SIF

Fixed-Point
algorithm

Code generation

Verification against specifications

C

VHDLSoftware ASIC

FPGASimulink

graph

SIF

SIF

• Open-source tool

• Implementation in C/C++, Sollya,
Python and Matlab

• ≈ 15000 lines of code

• Generation of VHDL with FloPoCo
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Perspectives: tomorrow at 9h00...
H(z)

H(z)
to

SIF

formats

SIF

Simulink
to

SIF

Fixed-Point
algorithm

Code generation

Verification against specifications

C

VHDLSoftware ASIC

FPGASimulink

graph

SIF

SIF

• Win some space
• Solve the “off-by-one” problem (0 ≤ m̂y −my ≤ 1)

• Win more space
• Take into account additional properties of input signals

(spectral properties)

• Study various algorithms with respect to different metrics
• LUTs, surface
• accuracy
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Perspectives: moyen terme
H(z)

H(z)
to

SIF

formats

SIF

Simulink
to

SIF

Fixed-Point
algorithm

Code generation

Verification against specifications

C

VHDLSoftware ASIC

FPGASimulink

graph

SIF

SIF

• Reliable implementation of digital filters
• Integrate methods of the transfer function design
• Relax the frequency-domain constraints

• Arithmetic tools
• Computation of eigenvalues in varying precision
• Solution of Lyapunov equations, etc.

• Optimization
• Wrap-up the generator with optimization loops
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Perspectives: long term
H(z)

H(z)
to

SIF

formats

SIF

Simulink
to

SIF

Fixed-Point
algorithm

Code generation

Verification against specifications

C

VHDLSoftware ASIC

FPGASimulink

graph

SIF

SIF

• Computer Arithmetic side
• Reliable numerical tools for linear algebra
• Evaluation of rational approximations

• Signal Processing side
• Design the transfer functions with the best quantized

coefficients
• Consider non-linear filters, Kalman filters, etc.
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SIF
A MIMO LTI system in SIF representation is characterized by




J 0 0
−K I n 0
−L 0 I p





t(k + 1)
x (k + 1)
y(k)


 =




0 M N
0 P Q
0 R S





t(k)
x (k)
u(k)




By rewriting we obtain





Jt(k + 1) = Mx (k) + Nu(k)
x (k + 1) = Kt(k + 1) + Px (k) + Qu(k)

y(k) = Lt(k + 1) + Rx (k) + Su(k)
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Lattice Wave Digital Filters

z�1

�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�2

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

Stage nStage 3

�6

�5 �2·n�1

�2·n

OUT1INP1

z�1

�0

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�3

�4

z�1

OUT1

OUT2

INP1

INP2

OUT1INP1

z�1

�2·(n�1)

�2·(n�1)�1

Stage 0

Stage 2 Stage (n� 1)

+

Low-pass

Input

n =
N � 1

2

1/2

1/2

+

�1

High-pass

Stage 1
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The error filter H∆

Denote

ε(k) =

(
εx (k)
εy(k)

)

∆x (k) = x♦(k)− x (k)

∆y(k) = y♦(k)− y(k)

Then, the filter H∆ = H−H♦ is

H∆

{
∆x (k + 1) = A∆x (k) +

(
I 0

)
ε(k)

∆y(k) = C∆x (k) +
(

0 I
)
ε(k)
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Worst-Case Peak Gain
Sensitive real-life filter

Input: A highly sensitive 5th order transfer function from
industrial application1.
Problem: given inputs from interval [−1.125; 1.125], determine
the interval for output variables.
Result:

• Naive WCPG, i.e. summing 1000 terms in double precision:
ȳ = 1.6238497× 1.125 = 0.8693 . . .

• Our WCPG with ε = 2−53:
ȳ = 1.9997191× 1.125 = 1.1697 . . .

1Obtained from Xilinx
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Worst-Case Peak Gain
Random filter

Input: Consider a stable 5th order random SISO filter
Problem: given inputs from interval [−1; 1), determine the
interval for output variables.
Result:

• Naive WCPG (1000 terms in double precision) ȳ = 105.66...

• Our WCPG with ε = 2−53: ȳ = 772.48...

0 400 800 1,200 1,600 2,000
−200

−100

0

100

200

k

y
(k
)

naive bound
worst-case output
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Worst-Case Peak Gain
Random filter

Input: Consider a stable 5th order random SISO filter
Problem: given inputs from interval [−1; 1), determine the
interval for output variables.
Result:

• Naive WCPG (1000 terms in double precision) ȳ = 105.66...

• Our WCPG with ε = 2−53: ȳ = 772.48...

1 2 3 4 5

·104

200

400

600

800

Truncation order

A
p
p
ro
x
im

at
io
n
on

th
e
W
C
P
G
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Worst-Case Peak Gain
Examples

Example 1: comes from Control Theory, describes a controller of
vehicle longitudinal oscillation
Example 2: 12th-order Butterworth filter

Example 1 Example 2

sizes n, p and q n = 10, p = 11, q = 1 n = 12, p = 1, q = 25
1− ρ(A) 1.39× 10−2 8.65× 10−3

max(SN ) 3.88× 101 5.50× 109

min(SN ) 1.29× 100 1.0× 100

ε 2−5 2−53 2−600 2−5 2−53 2−600

N 220 2153 29182 308 4141 47811
Inversion iterations 0 2 4 2 3 5

overall max precision (bits) 212 293 1401 254 355 1459
V −1 max precision (bits) 106 173 727 148 204 756
PN max precision (bits) 64 84 639 64 86 640
SN max precision (bits) 64 79 630 64 107 658

Overall execution time (sec) 0.11 1.53 60.06 0.85 11.54 473.20
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Transfer Function of a State-Space
Transfer function of a single-input single-output state-space S:

H (z ) = c(zI −A)−1b + d

Using the eigendecomposition A = XEX−1:

H (z ) =
P(z )

Q(z )
+ d

P(z ) =

n∑

i=1

(cX )i(X
−1b)i

∏

j 6=i

(z − λj )

Q(z ) =

n∏

j=1

(z − λj )

We compute an approximation Ĥ (z ) in Multiple Precision
arithmetic with mpmath.
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Verification of non-negativity
To verify f (ξ) ≥ 0, ∀ξ ∈ Ξ = [ξ1, ξ2] ⊆ [0, 1] we check if

(i) f (ξ) has no zeros
f (ξ′) > 0 for some ξ′ ∈ [ξ1, ξ2]

⇠1 ⇠2⇠0

(ii) f (ξ) has one zero
f (ξ1) > 0 and f (ξ2) > 0 ⇠1 ⇠2⇠00

(iii) interval Ξ can be split into subintervals
s.t. (i) or (ii) are satisfied for every
subinterval

⇠1 ⇠2⇠3

⌅1 ⌅2

We use Sollya tool for the implementation

• Number of zeros: Sturm’s theorem

• Evaluations: interval multiple precision arithmetic
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Verification of specifications
Sturm’s technique

Sturm’s sequence is a sequence of polynomials p0(x ), . . . , pm(x ):

p0(x ) = p(x )

p1(x ) = p′(x )

p2(x ) = −rem(p0, p1) = p1(x )q0(x )− p0(x ),

p3(x ) = −rem(p1, p2) = p2(x )q1(x )− p1(x ),

. . .

0 = −rem(pm−1, pm)
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Verification of specifications
Numerical examples

Input: four realizations of the same filter
Problem: verify realizations after coefficient quantization to
32/16/8 bits
Results:

wordlength 32 16 8

DFIIt
margin X unstable unstable

time 12.49s - -

ρ DFIIt
margin X X 4.68e-3 dB

time 13.12s 4.19s 104.01s

State-Space

Balanced

margin 6.16e-10 dB X 6.71e-1 dB

time 12.27s 18.18s 92.05s

Lattice Wave
margin 3.80e-10 dB X 1.73e-2 dB

time 920.88s 4.58s 200.83s
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Verification of specifications
Numerical examples

Input: four simple frequency specifications
Problem: Verify and compare transfer function design methods.
Results: comparison of SciPy in Python and Matlab

Butterworth Chebyshev Elliptic

margin (dB) margin (dB) margin (dB)

lowpass
Matlab 1.29e-17 7.93e-17 X
SciPy 2.14e-15 4.48e-2 4.48e-2

highpass
Matlab 2.77e-16 6.94e-17 4.48e-2
SciPy 3.02e-15 2.29e-16 4.48e-2

bandpass
Matlab 3.04e-17 X X
SciPy X 4.48e-2 4.48e-2

bandstop
Matlab 4.59e-16 3.09e-15 X
SciPy X 6.36e-15 7.02e-6
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Verification of specifications
Numerical examples

Filter implementation: 14th order bandpass filter
Specifications:





∣∣H (eiω)
∣∣ ≤ −80dB ∀ω ∈ [0, 17kHz] (stopband)

0dB ≤
∣∣H (eiω)

∣∣ ≤ 1− 10−4dB ∀ω ∈ [21kHz, 25kHz] (passband)∣∣H (eiω)
∣∣ ≤ −80dB ∀ω ∈ [27kHz, 30kHz] (stopband)

Verification result: implemented filter does not pass the
verification against frequency constraints
Verification time: 53 s

A. Volkova Reliable implementation of digital filtres September 25, 2017 51/38



upmc laborato i r e d ’ i n format ique de par i s 6

Verification of specifications
Numerical examples

Filter implementation: 14th order bandpass filter
Verification result: implemented filter does not pass the
verification against frequency constraints
Verification time: 53 s
Frequency response:
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Verification of specifications
Numerical examples

Filter implementation: 14th order bandpass filter
Verification result: implemented filter does not pass the
verification against frequency constraints
Verification time: 53 s
Frequency response:
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Verification of specifications
Numerical examples

Filter implementation: 14th order bandpass filter
Verification result: implemented filter does not pass the
verification against frequency constraints
Verification time: 53 s
Frequency response:
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Binding with FloPoCo
FloPoCo:

Figure: Interface to a Sum-Of-Product-by-Constant generator

Our tool: we deduce a lower bound on the error of computation
of each Sum-of-Product s.t. the error-bound on the filter’s output
is respected.

• Push-button

• Can implement any
structure

• No need to quantize
coefficients

• Reliable
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Worst-Case Peak Gain
Powering matrix A

(

N∑

k=0

∣∣CAkB
∣∣ −→−

N∑

k=0

∣∣CVT kV−1B
∣∣(≤ ε2

× = cancellation

× = less cancellation

A = XEX−1 V ≈ X and T ≈ E

T ≈ V−1 ×A×V

Ak ≈ V ×T k ×V−1
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Worst-Case Peak Gain
Step 3

∣∣∣∣∣
N∑

k=0

∣∣CVT kV−1B
∣∣ −

N∑

k=0

∣∣C ′T kB ′
∣∣
∣∣∣∣∣ ≤ ε3

Step 3 Compute the products CV and V−1B such that the
propagated error of matrix multiplications is bounded
by ε3.

∞∑
k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CVTkV−1B
∣∣∣

↓
N∑

k=0

∣∣∣C ′TkB′
∣∣∣

↓
N∑

k=0

∣∣C ′PkB
′∣∣

↓
N∑

k=0
|Lk |

↓
SN
↓
↓
↓
↓
↓
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Worst-Case Peak Gain
Step 4

∣∣∣∣∣
N∑

k=0

∣∣C ′T kB ′
∣∣ −

N∑

k=0

|C ′PkB
′|
∣∣∣∣∣ ≤ ε4

P0 := I

Pk := T ⊗Pk−1

Step 4 Compute the powers Pk of matrix T such that the
propagated error of matrix multiplications is bounded
by ε4.

∞∑
k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CVTkV−1B
∣∣∣

↓
N∑

k=0

∣∣∣C ′TkB′
∣∣∣

↓
N∑

k=0

∣∣C ′PkB
′∣∣

↓
N∑

k=0
|Lk |

↓
SN
↓
↓
↓
↓
↓
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Worst-Case Peak Gain
Step 5

∣∣∣∣∣
N∑

k=0

|C ′PkB
′| −

N∑

k=0

|Lk |
∣∣∣∣∣ ≤ ε5

Lk := C ′ ⊗ (Pk ⊗B ′)

Step 5 Compute on each step the matrix product C ′T kB ′

such the overall error of these multiplications on each
step is bounded by ε5.

∞∑
k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CVTkV−1B
∣∣∣

↓
N∑

k=0

∣∣∣C ′TkB′
∣∣∣

↓
N∑

k=0

∣∣C ′PkB
′∣∣

↓

N∑
k=0

|Lk |

↓
SN
↓
↓
↓
↓
↓
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Worst-Case Peak Gain
Step 5

∣∣∣∣∣
N∑

k=0

|C ′PkB
′| −

N∑

k=0

|Lk |
∣∣∣∣∣ ≤ ε5

Lk := C ′ ⊗ (Pk ⊗B ′)

Step 5 Compute on each step the matrix product C ′T kB ′

such the overall error of these multiplications on each
step is bounded by ε5.

∞∑
k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CVTkV−1B
∣∣∣

↓
N∑

k=0

∣∣∣C ′TkB′
∣∣∣

↓
N∑

k=0

∣∣C ′PkB
′∣∣

↓
N∑

k=0
|Lk |

↓
SN
↓
↓
↓
↓
↓
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Worst-Case Peak Gain
Step 6

∣∣∣∣∣
N∑

k=0

|Lk | − SN

∣∣∣∣∣ ≤ ε6

Sk := Sk−1 ⊕ |Lk |

Step 6 Compute the absolute value of matrix and accumulate
it in the result such that the error is bounded by ε6.

∞∑
k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CAkB
∣∣∣

↓
N∑

k=0

∣∣∣CVTkV−1B
∣∣∣

↓
N∑

k=0

∣∣∣C ′TkB′
∣∣∣

↓
N∑

k=0

∣∣C ′PkB
′∣∣

↓
N∑

k=0
|Lk |

↓
SN
↓
↓
↓
↓
↓
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Worst-Case Peak Gain
Algorithm

Taking εi = 1
6ε we obtain that ε1 + ε2 + . . .+ ε6 ≤ ε hence the

overall error bound is satisfied.

A floating-point evaluation of the WCPG:

Step 1: Compute N
Step 2: Compute V

T ← inv(V )⊗ (A⊗V )
Step 3: B ′ ← inv(V )⊗B

C ′ ← C ⊗V
S−1 ← |D |, P−1 ← I n

for k from 0 to N do:
Step 4: Pk ← T ⊗Pk−1

Step 5: Lk ← C ′ ⊗ (Pk ⊗B ′)
Step 6: S k ← S k−1 ⊕ abs(Lk )
Step 6: end for
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Worst-Case Peak Gain
Basic bricks

• multiplyAndAdd(A,B ,C , δ): for A ∈ Cp×n , B ∈ Cn×q ,
C ∈ Cp×q , computes a matrix D ∈ Cp×q such that

D = A ·B + C + ∆,

where the error-matrix ∆ is bounded by |∆| < δ, for a
certain scalar absolute error bound δ, given in argument to
the algorithm.

The algorithm performs an error-free scalar multiplication and uses
a modified software-implemented Kulisch-like accumulator.
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Worst-Case Peak Gain
Basic bricks

• sumAbs(A,B , δ): for A ∈ Rp×n , B ∈ Cp×n , computes a
matrix C ∈ Rp×n such that

C = A + |B |+ ∆,

where the error matrix ∆ is bounded by |∆| < δ, for a certain
scalar absolute error bound δ, given in argument to the
algorithm.
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Worst-Case Peak Gain
Basic bricks

• inv(V , δ): for a complex square matrix V ∈ Cn×n ,
computes a matrix U ∈ Cn×n such that

U = V −1 + ∆,

where the error matrix ∆ is bounded by |∆| < δ, for a certain
scalar absolute error bound δ, given in argument to the
algorithm.

The algorithm is based on Newton-Raphson matrix iteration,
requires a seed matrix in argument and works on certain
conditions, easily verified in our case.
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Worst-Case Peak Gain
Basic bricks

• frobeniusNormUpperBound(A, δ): for A ∈ Cp×n computes
f an upper bound on the Frobenius norm of A such that

f = ‖A‖F + γ

where 0 ≤ γ < δ, for a certain scalar absolute error bound δ,
given in argument to the algorithm.
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Interval Worst-Case Peak Gain

Given a state-space system H = ([A], [B ], [C ], [D ]), compute an
approximation S on the WCPG

〈〈H〉〉 = |[D ]|+
∞∑

k=0

∣∣∣[C ][A]k [B ]
∣∣∣

such that two properties are ensured:

• bound property: 〈〈H〉〉 ≤ S element-by-element;

• if coefficients’ radii → 0 and precision →∞ then the exact
〈〈H〉〉 is contained in an ε neighborhood of the approximation
S for an a priori given small ε > 0.
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Interval Worst-Case Peak Gain
Computing the eigensystem of interval matrix

Eigenvalues of interval matrix

Compute enclosures λI such that ∀A ∈ AI ,λ(A) ∈ λI

Approach

Following the works of Xu and Rachid (1996) and Rohn(1998), use
the Generalized Gershgorin’s Circles theorem.

Eigenvectors of interval matrix

Given the enclosures on eigenvalues λI , compute enclosures V I

such that ∀λ ∈ λI , ∀A ∈ AI if Aλ = AV , then V ∈ V I .

Approach

Use Rump’s theory of Verified Inclusions.
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