
SOUND APPROXIMATION OF PROGRAMS
WITH ELEMENTARY FUNCTIONS

ANASTASIA VOLKOVA, EVA DARULOVA

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Elementary functions sin, cos, exp, log, …

‣ essential to scientific and financial computations

‣ may be a performance bottleneck (~75% execution time for SPICE simulator)

‣ evaluated using standard libm (math.h) in single or double precision

TRADING ACCURACY FOR PERFORMANCE

01

Elementary functions sin, cos, exp, log, …

‣ essential to scientific and financial computations

‣ may be a performance bottleneck (~75% execution time for SPICE simulator)

‣ evaluated using standard libm (math.h) in single or double precision

Goal:

TRADING ACCURACY FOR PERFORMANCE

01

improve performance at the cost of accuracy

PERFORMANCE
ACCURACY

Elementary functions sin, cos, exp, log, …

‣ essential to scientific and financial computations

‣ may be a performance bottleneck (~75% execution time for SPICE simulator)

‣ evaluated using standard libm (math.h) in single or double precision

Goal:

TRADING ACCURACY FOR PERFORMANCE

01

improve performance at the cost of guaranteed accuracy

PERFORMANCE
ACCURACYGUARANTEED

Elementary functions sin, cos, exp, log, …

‣ essential to scientific and financial computations

‣ may be a performance bottleneck (~75% execution time for SPICE simulator)

‣ evaluated using standard libm (math.h) in single or double precision

Goal:

PERFORMANCE
ACCURACY

TRADING ACCURACY FOR PERFORMANCE

01

improve performance at the cost of guaranteed accuracy

GUARANTEED

Automatically

OVERVIEW OF THE TOOL
Input: program over reals

Output: C code with float64 & worst-case absolute error

Assuming libm:
‣ Absolute error 5.77e-15
‣ Roughly 38% of overall time for elementary functions

def axisRotationX(x: Real, y: Real, theta: Real): Real = {
 require(-2 <= x && x <= 2 && -4 <= y && y <= 4 && -5 <= theta && theta <= 5)

 x * cos(theta) + y * sin(theta)
 }

02

OVERVIEW OF THE TOOL
Input: program over reals

Output: C code with float64 & worst-case absolute error

Assuming libm:
‣ Absolute error 5.77e-15
‣ Roughly 38% of overall time for elementary functions

def axisRotationX(x: Real, y: Real, theta: Real): Real = {
 require(-2 <= x && x <= 2 && -4 <= y && y <= 4 && -5 <= theta && theta <= 5)

 x * cos(theta) + y * sin(theta)
 }

02

Want to reduce
Allow to increase

Input: program over reals

Output: C code with float64 & worst-case absolute error

Assuming libm:
‣ Absolute error 5.77e-15
‣ Roughly 38% of overall time for elementary functions

OVERVIEW OF THE TOOL

def axisRotationX(x: Real, y: Real, theta: Real): Real = {
 require(-2 <= x && x <= 2 && -4 <= y && y <= 4 && -5 <= theta && theta <= 5)

 x * cos(theta) + y * sin(theta)
 } ensuring(res => res +/- 1e-13)

02

Want to reduce
Allow to increase

Input: program over reals

Output: C code with float64 & worst-case absolute error

Assuming libm:
‣ Absolute error 5.77e-15
‣ Roughly 38% of overall time for elementary functions

With our tool:
‣ Improve performance using custom approximations with guaranteed accuracy

OVERVIEW OF THE TOOL

def axisRotationX(x: Real, y: Real, theta: Real): Real = {
 require(-2 <= x && x <= 2 && -4 <= y && y <= 4 && -5 <= theta && theta <= 5)

 x * cos(theta) + y * sin(theta)
 } ensuring(res => res +/- 1e-13)

02

Want to reduce
Allow to increase

User requirement Overall speedup Elem. func. speedup

1e-13 2.9% 7.6%

1e-12 13.4% 35.3%

1e-11 17.6% 46.3%

FLOATING-POINT ANALYSIS TOOLS AND CODE GENERATION
‣ IEEE 754-2008 standard (formats, operations, exceptions,…)

‣ Rounding errors must be modeled, analyzed and bounded:

∘ (x op y) = (x op y)(1 + δ), |δ | ≤ u , op = + , − , × , /

max
x∈[a;b]

| f(x) − f̃(x̃) |

03

FLOATING-POINT ANALYSIS TOOLS AND CODE GENERATION
‣ IEEE 754-2008 standard (formats, operations, exceptions,…)

‣ Rounding errors must be modeled, analyzed and bounded:

‣ Automated tool support

‣ Certified error bounds (Gappa, FPTaylor, Daisy, PRECiSA, Real2Float,…)

‣ Rewriting (SALSA) and mixed-precision tuning (Herbie)

‣ Approximate computing (STOKE)

‣ Code generators for small numerical kernels (Metalibm)

∘ (x op y) = (x op y)(1 + δ), |δ | ≤ u , op = + , − , × , /

max
x∈[a;b]

| f(x) − f̃(x̃) |

03

DAISY
‣ Static analysis of numerical codes

‣ Rewriting techniques

‣ Mixed-precision tuning

‣ Code generation in floating- and fixed-point by ensuring user-given error

Two-step data flow static analysis:

Arithmetic operations and common elementary functions (sin, cos, exp,..) assuming libm

RANGE ANALYSIS ROUNDOFF ERROR
 ANALYSIS

Interval and Affine
Arithmetic

Affine
Arithmetic

04

https://github.com/malyzajko/daisy

https://github.com/malyzajko/daisy

METALIBM - CODE GENERATOR FOR MATH FUNCTIONS

Three-stages of function evaluation:

(PIECE-WISE) POLYNOMIAL
APPROXIMATION

PROPERTIES
 DETECTION

ARG REDUCTION /
DOMAIN SPLITTING

METALIBM

INPUT OUTPUT
Function
Domain
Target error
Max approx degree
…

C code

Gappa certificate

Symmetry, period, … fpminimaxuniform/arbitrary splitting

05

http://www.metalibm.org/lutetia.html

http://www.metalibm.org/lutetia.html

EMPOWERING DAISY BY USING METALIBM

Analyses errors and, given error budget,
determines the room for improvement

Provides guaranteed implementations
of elementary functions

06

https://github.com/malyzajko/daisy http://www.metalibm.org/lutetia.html

KEY IDEA: ERROR BUDGET REPARTITION
Our example: f(x) = x * cos(theta) + y * sin(theta)

 �

When satisfying a priori error bound…

Step 1: bound the arithmetic errors

Step 2: repartition the remaining error budget among � and �

Technique: estimate the sensitivity of a program wrt � and �

| f(x) − f̃(x̃) | ≤ | f(x) − ̂f1(x) | + | ̂f1(x) − ̂f2(x) | + | ̂f2(x) − f̃(x̃) |

̂f1 ̂f2

̂f1 ̂f2

only cos()
approximated

both cos() and sin()
approximated

arithmetic
approximated

07

OVERALL STRUCTURE

ERROR
ANALYSIS

ERROR
ANALYSIS

APPROXIMATION

CODE
GENERATION

AST
DECOMPOSITION

FRONTEND

08

‣ Reading and decomposing the program

‣ Range and roundoff error analysis (float64 arithmetic + libm)

‣ Error budget repartition

‣ Code generation via Metalibm

‣ Computing final error bounds (always tighter than the target)

‣ Final C code generation

PERFORMANCE IMPROVEMENTS

08

Target errors: 4 orders of magnitude larger than libm-based
Compound functions: maximum depth

Average overall speedup: 18.1%
Average elem. function speedup: 54% (2x faster!)

CONCLUSION
‣ Automatic performance improvements even for non-experts

‣ Flexible tool for expert scientific computing developers

‣ Efficient heuristic to select suitable approximation parameters

Research report available on https://avolkova.org

09

https://github.com/malyzajko/daisy

PERFORMANCE

GUARANTEED

ACCURACY

https://avolkova.org

