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TRADING ACCURACY FOR PERFORMANCE

Elementary functions sin, cos, exp, log, ...
» essential to scientific and financial computations
> may be a performance bottleneck (~75% execution time for SPICE simulator)

> evaluated using standard libm (math.h) in single or double precision
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TRADING ACCURACY FOR PERFORMANCE

Elementary functions sin, cos, exp, log, ...
» essential to scientific and financial computations
> may be a performance bottleneck (~75% execution time for SPICE simulator)

> evaluated using standard libm (math.h) in single or double precision

Goal:

Automatically improve performance at the cost of guaranteed accuracy




OVERVIEW OF THE TOOL

02
Input: program over reals

Q‘Z;;Sy IM
META-libm
def axisRotationX(x: Real, y: Real, theta: Real): Real = {

require(-2 <= x & x <= 2 && -4 <=y && y <= 4 && -5 <= theta && theta <= 5)

X * cos(theta) + y % sin(theta)

}

Output: C code with float64 & worst-case absolute error

Assuming libm:

» Absolute error 5.77e-15

> Roughly 38% of overall time for elementary functions
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02
Input: program over reals

Q&;S(Y % IM
META-libm
def axisRotationX(x: Real, y: Real, theta: Real): Real = {

require(-2 <= x & x <= 2 && -4 <=y && y <= 4 && -5 <= theta && theta <= 5)

X * cos(theta) + y % sin(theta)

} ensurinﬂ(res => res +/- le-13)

Output: C code with float64 & worst-case absolute error

Assuming libm:

> Absolute error 5.77e-15 Allow to increase
> Roughly 38% of overall time for elementary functions Want to reduce
With our tool:

> Improve performance using custom approximations with guaranteed accuracy

Te-13 2.9% 7.6%
lTe-12 13.4% 35.3%
Te-11 17.6% 46.3%
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FLOATING-POINT ANALYSIS TOOLS AND CODE GENERATION

» |EEE 754-2008 standard (formats, operations, exceptions,...)
» Rounding errors must be modeled, analyzed and bounded:
c(xopy)=@opy)l+d), [6|<u,op=+,-.,X,/

max | f(x) - f(%)|

x€la;b]
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FLOATING-POINT ANALYSIS TOOLS AND CODE GENERATION

» |EEE 754-2008 standard (formats, operations, exceptions,...)
» Rounding errors must be modeled, analyzed and bounded:
c(xopy)=@opy)l+d), [6|<u,op=+,-.,X,/
max | f(x) — f(%)|
x€la;b]
» Automated tool support
» Certified error bounds (Gappa, FPTaylor, Daisy, PRECiSA, Real2Float,...)
» Rewriting (SALSA) and mixed-precision tuning (Herbie)

> Approximate computing (STOKE)

» Code generators for small numerical kernels (Metalibm)



DAISY

Static analysis of numerical codes

v

v

Rewriting techniques

v

Mixed-precision tuning
» Code generation in floating- and fixed-point by ensuring user-given error

Two-step data flow static analysis:

RANGE ANALYSIS ROUNDOFF ERROR
ANALYSIS
Interval and Affine Affine
Arithmetic Arithmetic

Arithmetic operations and common elementary functions (sin, cos, exp,..) assuming libm

https://github.com/malyzajko/daisy
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METALIBM - CODE GENERATOR FOR MATH FUNCTIONS ﬂm
QUTPUT

| C code

INPUT

Function

Domain :>
!

Target error

METALIBM

Gappa certificate

Max approx degree

Three-stages of function evaluation:

PROPERTIES ARG REDUCTION / (PIECE-WISE) POLYNOMIAL
DETECTION DOMAIN SPLITTING APPROXIMATION

Symmetry, period, ... uniform/arbitrary splitting fpminimax

http://www.metalibm.org/lutetia.html
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EMPOWERING DAISY BY USING METALIBM

‘5‘38

HETA-libm

Analyses errors and, given error budget, Provides guaranteed implementations
determines the room for improvement of elementary functions

https://github.com/malyzajko/daisy http://www.metalibm.org/lutetia.html
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KEY IDEA: ERROR BUDGET REPARTITION

Our example: f(x) = x * cos(theta) + y * sin(theta)

1f(x) = F®) | < 1@ =[] + | F,00 — H00) | + [0 — F&@) |

only cos() both cos() and sin() arithmetic
approximated approximated approximated

When satisfying a priori error bound...

Step 1: bound the arithmetic errors

Step 2: repartition the remaining error budget among £, and £,

Technique: estimate the sensitivity of a program wrtfl and fz
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OVERALL STRUCTURE

» Reading and decomposing the program

> Range and roundoff error analysis (floaté4 arithmetic + libm)
> Error budget repartition

» Code generation via Metalibm

» Computing final error bounds (always tighter than the target)

> Final C code generation

FRONTEND

AST ~
{_ DECOMPOSITION §

ERROR ,
aNALYSIS ]

APPROXIMATION

ERROR |
ANALYSIS ]

CODE

| GENERTION |
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Target errors: 4 orders of magnitude larger than libom-based

Compound functions: maximum depth

Average overall speedup: 18.1%
Average elem. function speedup: 54% (2x faster!)



CONCLUSION

» Automatic performance improvements even for non-experts
> Flexible tool for expert scientific computing developers

> Efficient heuristic to select suitable approximation parameters

ANTEED
B URACY

META-libm

https://qithub.com/malyzajko/dais

Research report available on https://avolkova.org



https://avolkova.org

