
i n r i a en s de lyon - l i p

FiXiF toolbox:
numerically reliable digital filters

Anastasia Volkova

SCAN 2018
September 12, 2018

i n r i a en s de lyon - l i p

Linear digital filters

u(k) y(k)

H

Y (z)U(z)

Frequency domain

H (z) =
−z−2 + . . .

1− z−1 + z−2 + . . .

coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations

Time domain
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1 -1

+ + + -1

+ 0.5
y(k)

z−1

z−1

z−1

γ1 =

γ2 =

γ3 =

Constraints w.r.t. surface, speed, accuracy . . .

Circuit / Code

A. Volkova FiXiF toolbox: validated numerics for DSP 1/19

i n r i a en s de lyon - l i p

Linear digital filters

u(k) y(k)

H

Y (z)U(z)

Frequency domain

H (z) =
0.0495329964− 0.148598989z−2 + . . .

1− 2.12060288z−1 + 2.7247492z−2 + . . .

coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations

Time domain
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1 -1

+ + + -1

+ 0.5
y(k)

z−1

z−1

z−1

γ1 =

γ2 =

γ3 =

Constraints w.r.t. surface, speed, accuracy . . .

Circuit / Code

A. Volkova FiXiF toolbox: validated numerics for DSP 1/19

i n r i a en s de lyon - l i p

Linear digital filters

u(k) y(k)

H

Y (z)U(z)

Frequency domain

H (z) =
0.0495329964− 0.148598989z−2 + . . .

1− 2.12060288z−1 + 2.7247492z−2 + . . .

coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations

Time domain
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1 -1

+ + + -1

+ 0.5
y(k)

z−1

z−1

z−1

γ1 = 0.347586468864209

γ2 = 0.334748427563068

γ3 = 0.084938546237853

Constraints w.r.t. surface, speed, accuracy . . .

Circuit / Code

A. Volkova FiXiF toolbox: validated numerics for DSP 1/19

i n r i a en s de lyon - l i p

Linear digital filters

u(k) y(k)

H

Y (z)U(z)

Frequency domain

H (z) =
0.0495329964− 0.148598989z−2 + . . .

1− 2.12060288z−1 + 2.7247492z−2 + . . .

coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations

Time domain
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1 -1

+ + + -1

+ 0.5
y(k)

z−1

z−1

z−1

γ1 = 0.34765625

γ2 = 0.3359375

γ3 = 0.0859375

Constraints w.r.t. surface, speed, accuracy . . .

Circuit / Code

A. Volkova FiXiF toolbox: validated numerics for DSP 1/19

i n r i a en s de lyon - l i p

Linear digital filters

u(k) y(k)

H

Y (z)U(z)

Frequency domain

H (z) =
0.0495329964− 0.148598989z−2 + . . .

1− 2.12060288z−1 + 2.7247492z−2 + . . .

coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations

Time domain
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1 -1

+ + + -1

+ 0.5
y(k)

z−1

z−1

z−1

γ1 = 0.34765625

γ2 = 0.3359375

γ3 = 0.0859375

Constraints w.r.t. surface, speed, accuracy . . .

Circuit / Code

A. Volkova FiXiF toolbox: validated numerics for DSP 1/19

i n r i a en s de lyon - l i p

Reliable and accurate digital filters
Majority of applications

• do not need numerical guarantee

• well-studied subject

• straightforward implementations

• commercial and free tools

Safety-critical applications

• require numerical guarantees

• have high(er) cost

• limited literature

• require expert knowledge from
engineers

• no out-of-box solution

Context: safety-critical applications

Goal: generate Fixed-Point codes reliable by construction

Means: interval, floating-point, multiple precision arithmetics

A. Volkova FiXiF toolbox: validated numerics for DSP 2/19

i n r i a en s de lyon - l i p

Reliable and accurate digital filters
Majority of applications

• do not need numerical guarantee

• well-studied subject

• straightforward implementations

• commercial and free tools

Safety-critical applications

• require numerical guarantees

• have high(er) cost

• limited literature

• require expert knowledge from
engineers

• no out-of-box solution

Context: safety-critical applications

Goal: generate Fixed-Point codes reliable by construction

Means: interval, floating-point, multiple precision arithmetics

A. Volkova FiXiF toolbox: validated numerics for DSP 2/19

i n r i a en s de lyon - l i p

Reliable and accurate digital filters
Majority of applications

• do not need numerical guarantee

• well-studied subject

• straightforward implementations

• commercial and free tools

Safety-critical applications

• require numerical guarantees

• have high(er) cost

• limited literature

• require expert knowledge from
engineers

• no out-of-box solution

Context: safety-critical applications

Goal: generate Fixed-Point codes reliable by construction

Means: interval, floating-point, multiple precision arithmetics

A. Volkova FiXiF toolbox: validated numerics for DSP 2/19

i n r i a en s de lyon - l i p

Fixed-Point Arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

w wordlength
m Most Significant Bit
` Least Significant Bit

Problem setting for MSB/LSB choice:

• fix wordlength

• no overflow

• maximize the precision

• bound on the output error

A. Volkova FiXiF toolbox: validated numerics for DSP 3/19

i n r i a en s de lyon - l i p

Example: a 15th order lowpass filter

Algorithm # coefficients
State-Space (canonical) 31
State-Space (balanced) 256

Direct Form II (transposed) 31
Li-Gevers-Sun 102

A. Volkova FiXiF toolbox: validated numerics for DSP 4/19

i n r i a en s de lyon - l i p

Example: a 15th order lowpass filter

Algorithm # coefficients
State-Space (canonical) 31
State-Space (balanced) 256

Direct Form II (transposed) 31
Li-Gevers-Sun 102

Coefficient quantization

A. Volkova FiXiF toolbox: validated numerics for DSP 4/19

i n r i a en s de lyon - l i p

Example: a 15th order lowpass filter

Algorithm # coefficients
State-Space (canonical) 31
State-Space (balanced) 256

Direct Form II (transposed) 31
Li-Gevers-Sun 102

Coefficient quantization Rounding errors

A. Volkova FiXiF toolbox: validated numerics for DSP 4/19

i n r i a en s de lyon - l i p

Existing approaches on FxP
implementation

• simulations [Matlab], [D. Báez-López,2001]
• non-exhaustive

• noise propagation models [Menard, 2008]
• does not give intervals for outputs

• interval arithmetic [Carreras, 1999], [Vakili, 2013]
• wrapping effect for recursive systems

• affine arithmetic [Puschel, 2003], [Constantinides, 2006]
• need to bound `∞ norm of the filter’s output
• static unroll of the loops

A. Volkova FiXiF toolbox: validated numerics for DSP 5/19

i n r i a en s de lyon - l i p

A. Volkova FiXiF toolbox: validated numerics for DSP 6/19

i n r i a en s de lyon - l i p

TOOLBOX

“Digital filters reliable by construction ”

Available at https://github.com/fixif

Joint work with

Thibault Hilaire
thibault.hilaire@lip6.fr

Christoph Lauter
chirstoph.lauter@lip6.fr

A. Volkova FiXiF toolbox: validated numerics for DSP 7/19

https://github.com/fixif
thibault.hilaire@lip6.fr
chirstoph.lauter@lip6.fr

i n r i a en s de lyon - l i p

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCo

A. Volkova FiXiF toolbox: validated numerics for DSP 8/19

i n r i a en s de lyon - l i p

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCo

A. Volkova FiXiF toolbox: validated numerics for DSP 8/19

i n r i a en s de lyon - l i p

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCo

A. Volkova FiXiF toolbox: validated numerics for DSP 8/19

i n r i a en s de lyon - l i p

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCo

A. Volkova FiXiF toolbox: validated numerics for DSP 8/19

i n r i a en s de lyon - l i p

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCo

A. Volkova FiXiF toolbox: validated numerics for DSP 8/19

i n r i a en s de lyon - l i p

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCoa

a
http://flopoco.gforge.inria.fr/

A. Volkova FiXiF toolbox: validated numerics for DSP 8/19

http://flopoco.gforge.inria.fr/

i n r i a en s de lyon - l i p

FiXiF tool: under the hood

Front-end

• Python

• Collection of classes

Back-end

• C/C++ libraries

• Sollya procedures

• FloPoCo tool

Requirements:

• MPFR, MPFI,

LAPACK

• mpmath

Python

FxP
Arithmetic

WCPG
evaluation

C

Python

FxP
Formats

C
FiXiF

Python

Verification

Sollya
FloPoCo
interface

C++

A. Volkova FiXiF toolbox: validated numerics for DSP 9/19

i n r i a en s de lyon - l i p

FiXiF – 1
◦ Filter specifications and transfer function design

from fixif import *

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

H = g.to_dTF(ftype="butter", method="scipy")

F = Filter(tf=H)

R_SS = State_Space(Filter(tf=H))

R_SS_balanced = State_Space(Filter(tf=H), form="balanced")

R_DFII = DFII(Filter(tf=H), transposed=True)

R_LGS = LGS(Filter(tf=H), transposed=True)

A. Volkova FiXiF toolbox: validated numerics for DSP 10/19

i n r i a en s de lyon - l i p

FiXiF – 1
◦ Filter specifications and transfer function design

from fixif import *

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

H = g.to_dTF(ftype="butter", method="scipy")

F = Filter(tf=H)

Type: lowpass (Fs=48000Hz)

Freq. [0Hz,9600Hz]: Passband in [0.95dB, 1.05dB]

Freq. [12000Hz,24000.0Hz]: Stopband at -20dB

4.58056194e-05 + 6.87084291e-04 z-̂1 + 4.8095900e-03z-̂2 + ...

H(z) = ---

1.0 + -1.6206385z-̂1 + 3.20872535z-̂2 + ...

R_SS = State_Space(Filter(tf=H))

R_SS_balanced = State_Space(Filter(tf=H), form="balanced")

R_DFII = DFII(Filter(tf=H), transposed=True)

R_LGS = LGS(Filter(tf=H), transposed=True)

A. Volkova FiXiF toolbox: validated numerics for DSP 10/19

i n r i a en s de lyon - l i p

FiXiF – 1
◦ Filter specifications and transfer function design

from fixif import *

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

H = g.to_dTF(ftype="butter", method="scipy")

F = Filter(tf=H)

◦ Filter realization (algorithm)

R_SS = State_Space(Filter(tf=H))

R_SS_balanced = State_Space(Filter(tf=H), form="balanced")

R_DFII = DFII(Filter(tf=H), transposed=True)

R_LGS = LGS(Filter(tf=H), transposed=True)

A. Volkova FiXiF toolbox: validated numerics for DSP 10/19

i n r i a en s de lyon - l i p

State-Space and an error model
Take a State-Space algorithm

H

♦

{
x

♦

(k + 1) =

♦mx (

Ax

♦

(k) + Bu(k)

) + εx (k)

y

♦

(k) =

♦my (

Cx

♦

(k) + Du(k)

) + εy(k)

A. Volkova FiXiF toolbox: validated numerics for DSP 11/19

i n r i a en s de lyon - l i p

State-Space and an error model
Take a State-Space algorithm and add rounding

H♦
{

x♦(k + 1) = ♦mx (Ax♦(k) + Bu(k))

+ εx (k)

y♦(k) = ♦my (Cx♦(k) + Du(k))

+ εy(k)

where ♦m is some operator ensuring faithful rounding:

|♦m(x)− x | ≤ 2`

A. Volkova FiXiF toolbox: validated numerics for DSP 11/19

i n r i a en s de lyon - l i p

State-Space and an error model
Take a State-Space algorithm and add rounding

H♦
{

x♦(k + 1) =

♦mx (

Ax♦(k) + Bu(k)

)

+ εx (k)
y♦(k) =

♦my (

Cx♦(k) + Du(k)

)

+ εy(k)

with
|εx (k)| ≤ 2`x and |εy(k)| ≤ 2`y

A. Volkova FiXiF toolbox: validated numerics for DSP 11/19

i n r i a en s de lyon - l i p

State-Space and an error model
Take a State-Space algorithm and add rounding

H♦
{

x♦(k + 1) =

♦mx (

Ax♦(k) + Bu(k)

)

+ εx (k)
y♦(k) =

♦my (

Cx♦(k) + Du(k)

)

+ εy(k)

with
|εx (k)| ≤ 2`x and |εy(k)| ≤ 2`y

We express x (k)− x♦ and y(k)− y♦(k) ... using a new filter:

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
"y (k)

∂

rounding errors

H⌃
|y⌃(k)|  |�(k)| + |y(k)||y⌃(k)|  |�q(k)| + |y(k)|

A. Volkova FiXiF toolbox: validated numerics for DSP 11/19

i n r i a en s de lyon - l i p

Reliable implementation

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
"y (k)

∂

rounding errors

H⌃
|∆(k)| ≤ 〈〈H∆〉〉

(
2`x

2`y

)

Basic bricks:
• Reliable bound on a linear filter’s output

• Worst-Case Peak Gain measure [V-Lauter-Hilaire’15]

• Take into account error propagation
• Iterative refinement of MSB [V-Lauter-Hilaire’16]

• Never overestimate MSB by more than one

A. Volkova FiXiF toolbox: validated numerics for DSP 12/19

i n r i a en s de lyon - l i p

Worst-Case Peak Gain

• Matrix 〈〈S〉〉 =
∑∞

k=0

∣∣CAkB
∣∣ [Balakrishnyan-Boyd’91]

Problem: approximation and evaluation of the WCPG with an a
priori absolute error bound∣∣∣

∑∞
k=0

∣∣CAkB
∣∣− ŜN

∣∣∣ < ε

Solution [V-Hilaire-Lauter’15]:

1X

k=0

|CAkB| bSN"1 "2 "3 "4 "5 "6

truncation

direct formula

sum evaluation

adaptation of internal precision
s.t. error bound is satisfied a priori"i

Techniques: a priori floating-point error analysis, verified
inclusions for eigendecomposition, Gershgorin circles computation

A. Volkova FiXiF toolbox: validated numerics for DSP 13/19

i n r i a en s de lyon - l i p

FiXiF – 2
Determine the Fixed-Point Formats

w = 16

while True:

w = w - 1

msb, lsb, error, additionalSteps = FXPF_ABCD(R_SS.A, R_SS.B,

R_SS.C, R_SS.D, 1.0, w)

Wordlength=[16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16]

Additional steps: 1

LSB: [-13 -13 -14 -14 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15]

Errors: [[0.00086691 0.00121799 0.00152309 0.00172836 0.00158205

0.00121137 0.00079471 0.00048683 0.00029988 0.0001935 0.00013235

0.00009573 0.00007329 0.00005811 0.00004509 0.00152433]]

.

.

.

Wordlength=[5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5]

Error: LSB reached point when it is larger than initial MSB estimation

Error determining Fixed-Point Formats.

A. Volkova FiXiF toolbox: validated numerics for DSP 14/19

i n r i a en s de lyon - l i p

FiXiF – 2
Determine the Fixed-Point Formats

w = 16

while True:

w = w - 1

msb, lsb, error, additionalSteps = FXPF_ABCD(R_SS.A, R_SS.B,

R_SS.C, R_SS.D, 1.0, w)

Wordlength=[16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16]

Additional steps: 1

LSB: [-13 -13 -14 -14 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15]

Errors: [[0.00086691 0.00121799 0.00152309 0.00172836 0.00158205

0.00121137 0.00079471 0.00048683 0.00029988 0.0001935 0.00013235

0.00009573 0.00007329 0.00005811 0.00004509 0.00152433]]

.

.

.

Wordlength=[5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5]

Error: LSB reached point when it is larger than initial MSB estimation

Error determining Fixed-Point Formats.

A. Volkova FiXiF toolbox: validated numerics for DSP 14/19

i n r i a en s de lyon - l i p

Verification of specifications

Implementation :
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1

z−1

-1 z−1

+ + z−1 + -1

+ 0.5
y(k)

γ1 = 89 · 2−8, γ1 = 43 · 2−7, γ1 = 11 · 2−7

Verify the specifications:

!

��H(ei!)
��

⇡

no false positives

Solution [V-Lauter-Hilaire’17]

• MP approximation of Ĥ (z)
→ error bound [Balakrishnyan’92]:∣∣∣(H − Ĥ

)
(eiω)

∣∣∣ ≤ Θ

• Verification of Ĥ (z)
→ proof of non-negativity of a
polynomial

� + ⇥

� �⇥

�

�

| bH(ei!)|

!

A. Volkova FiXiF toolbox: validated numerics for DSP 15/19

i n r i a en s de lyon - l i p

Verification of specifications

Implementation :
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1

z−1

-1 z−1

+ + z−1 + -1

+ 0.5
y(k)

γ1 = 89 · 2−8, γ1 = 43 · 2−7, γ1 = 11 · 2−7

Verify the specifications:

!

��H(ei!)
��

⇡

no false positives

Solution [V-Lauter-Hilaire’17]

• MP approximation of Ĥ (z)
→ error bound [Balakrishnyan’92]:∣∣∣(H − Ĥ

)
(eiω)

∣∣∣ ≤ Θ

• Verification of Ĥ (z)
→ proof of non-negativity of a
polynomial

� + ⇥

� �⇥

�

�

| bH(ei!)|

!

A. Volkova FiXiF toolbox: validated numerics for DSP 15/19

i n r i a en s de lyon - l i p

Verification of specifications

Implementation :
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1

z−1

-1 z−1

+ + z−1 + -1

+ 0.5
y(k)

γ1 = 89 · 2−8, γ1 = 43 · 2−7, γ1 = 11 · 2−7

Verify the specifications:

!

��H(ei!)
��

⇡

no false positives

Solution [V-Lauter-Hilaire’17]

• MP approximation of Ĥ (z)
→ error bound [Balakrishnyan’92]:∣∣∣(H − Ĥ

)
(eiω)

∣∣∣ ≤ Θ

• Verification of Ĥ (z)
→ proof of non-negativity of a
polynomial

� + ⇥

� �⇥

�

�

| bH(ei!)|

!

A. Volkova FiXiF toolbox: validated numerics for DSP 15/19

i n r i a en s de lyon - l i p

FiXiF – 3
Example of the verification

#g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

CheckIfRealizationInGabarit(g, R_SS.quantize(16))

Overall check okay: false

Computing this result took 2258ms

The following issues have been found:

Issue in subdomain Omega = pi * [0;0.4] at omega = pi *

[0;5.3172964416593691658936355013934529087741417880979e-53]:

|H(exp(j*omega))| should be between 10^ 4.75e-2 and 10^ (1.05 / 20) but

evaluates to [1.0000497795523700519233990284759435759640164376565;

1.0000497795523700519233990284759435759640164376566] =

10^ ([4.323689366417695635232485092238116632596970479257e-4;

4.3236893664176956352324850922381166325969704866858e-4]/20)

.

.

.

A. Volkova FiXiF toolbox: validated numerics for DSP 16/19

i n r i a en s de lyon - l i p

FiXiF – 3
Example of the verification

#g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

CheckIfRealizationInGabarit(g, R_SS.quantize(16))

Overall check okay: false

Computing this result took 2258ms

The following issues have been found:

Issue in subdomain Omega = pi * [0;0.4] at omega = pi *

[0;5.3172964416593691658936355013934529087741417880979e-53]:

|H(exp(j*omega))| should be between 10^ 4.75e-2 and 10^ (1.05 / 20) but

evaluates to [1.0000497795523700519233990284759435759640164376565;

1.0000497795523700519233990284759435759640164376566] =

10^ ([4.323689366417695635232485092238116632596970479257e-4;

4.3236893664176956352324850922381166325969704866858e-4]/20)

.

.

.

A. Volkova FiXiF toolbox: validated numerics for DSP 16/19

i n r i a en s de lyon - l i p

Behind the scenes
During these 2.26 seconds...
• Rational arithmetic

• proof of non-negativity of a real polynomial

• Interval arithmetic
• Verified Inclusions for the eigenvalues

• Dynamic Multiple-Precision arithmetic
• Computation of Gershgorin circles
• Evaluation of WCPG

• Floating-Point arithmetic
• Computation of eigenvalues with LAPACK
• Matrix arithmetic with a priori error bounds

. . . to verify an implementation in Fixed-Point arithmetic!

A. Volkova FiXiF toolbox: validated numerics for DSP 17/19

i n r i a en s de lyon - l i p

Back to the generator

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Rigorous use of a combination of different arithmetics

• Numerical guarantees in time and frequency domains

• Unifying internal representation

• Easily extendable modular implementation

A. Volkova FiXiF toolbox: validated numerics for DSP 18/19

i n r i a en s de lyon - l i p

Beyond FiXiF
Verification of frequency specifications:

• software-hardware co-design of FIR filters1

Worst-Case Peak Gain evaluation:

• digital filters computed just right on FPGAs2

Internal representation SIF

• error analysis for multiplierless FFT3

Formal proofs of the code generator

• Coq proofs of the WCPG algorithm4

1with M. Kumm (Kassel University) and S. Filip (Inria Rennes)
2with F. de Dinechin (INSA Lyon) and M. Istoan (Imperial College)
3with F. Qureshi and J. Takala (Tampere University)
4with S. Boldo and D. Gallois (Inria Paris)

A. Volkova FiXiF toolbox: validated numerics for DSP 19/19

TOOLBOX

“Digital filters reliable by construction ”

https://github.com/fixif

Anastasia Volkova
anastasia.volkova@inria.fr

avolkova.org

Thibault Hilaire
thibault.hilaire@lip6.fr

docmatic.fr

Christoph Lauter
chirstoph.lauter@lip6.fr

christoph-lauter.org

https://github.com/fixif
anastasia.volkova@inria.fr
avolkova.org
thibault.hilaire@lip6.fr
docmatic.fr
chirstoph.lauter@lip6.fr
christoph-lauter.org

i n r i a en s de lyon - l i p

Verification of a transfer function
We need to show that ∀z = e iω, ω ∈ Ω ⊆ [0, π]

β ≤ |H (z)| ≤ β

...which boils down to showing that ∀ξ ∈ Ξ ⊆ [0, 1]

f (ξ) ≥ 0

with f ∈ R[ξ].

Verification that f is positive or zero

Our algorithm is based on:

• the Sturm’s technique that gives the number of real roots of a
polynomial

• a subdivision on sub-intervals

• evaluations in Multiple-Precision Interval Arithmetic

A. Volkova FiXiF toolbox: validated numerics for DSP 20/19

i n r i a en s de lyon - l i p

Verification of a transfer function
We need to show that ∀z = e iω, ω ∈ Ω ⊆ [0, π]

β ≤ |H (z)| ≤ β

...which boils down to showing that ∀ξ ∈ Ξ ⊆ [0, 1]

f (ξ) ≥ 0

with f ∈ R[ξ].

Verification that f is positive or zero

Our algorithm is based on:

• the Sturm’s technique that gives the number of real roots of a
polynomial

• a subdivision on sub-intervals

• evaluations in Multiple-Precision Interval Arithmetic

A. Volkova FiXiF toolbox: validated numerics for DSP 20/19

	Appendix
	Appendix

	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	anm2:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	anm1:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	anm0:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

