
intel

Reliable and accurate computing.
Computer arithmetic approach
for digital filters.

Anastasia Volkova

4th Workshop on the Design and Analysis of Robust Systems

July 13, 2019

intel

Impact of numerical errors

Funny fact:

• Broken YouTube

Not funny:

• Explosion of Ariane 5

• Boeing 787 problems

• Patriot missiles

A. Volkova Reliable and accurate computing 1/27

intel

Impact of numerical errors

Funny fact:

• Broken YouTube

Not funny:

• Explosion of Ariane 5

• Boeing 787 problems

• Patriot missiles

A. Volkova Reliable and accurate computing 1/27

intel

Digitization and the choices we make

• Formats and Arithmetic
• floating-point
• fixed-point

• Hardware and Software
• CPU/GPU/FPGA/ASIC
• language, compiler

• Generalist and App. Specific
• math. libraries†

• digital filters, control, neural
networks,. . .

PERFORMANCE

GUARANTEED

ACCURACY

Reliability

Automation

Optimization

†Wed, 17:50 ”Sound Approximation of Programs with Elementary Functions”

A. Volkova Reliable and accurate computing 2/27

intel

Digitization and the choices we make

• Formats and Arithmetic
• floating-point
• fixed-point

• Hardware and Software
• CPU/GPU/FPGA/ASIC
• language, compiler

• Generalist and App. Specific
• math. libraries†

• digital filters, control, neural
networks,. . .

PERFORMANCE

GUARANTEED

ACCURACY

Reliability

Automation

Optimization

†Wed, 17:50 ”Sound Approximation of Programs with Elementary Functions”

A. Volkova Reliable and accurate computing 2/27

intel

Digitization and the choices we make

• Formats and Arithmetic
• floating-point
• fixed-point

• Hardware and Software
• CPU/GPU/FPGA/ASIC
• language, compiler

• Generalist and App. Specific
• math. libraries†

• digital filters, control, neural
networks,. . .

PERFORMANCE

GUARANTEED

ACCURACY

Reliability

Automation

Optimization

†Wed, 17:50 ”Sound Approximation of Programs with Elementary Functions”

A. Volkova Reliable and accurate computing 2/27

intel

Digitization and the choices we make

• Formats and Arithmetic
• floating-point
• fixed-point

• Hardware and Software
• CPU/GPU/FPGA/ASIC
• language, compiler

• Generalist and App. Specific
• math. libraries†

• digital filters, control, neural
networks,. . .

PERFORMANCE

GUARANTEED

ACCURACY

Reliability

Automation

Optimization

†Wed, 17:50 ”Sound Approximation of Programs with Elementary Functions”

A. Volkova Reliable and accurate computing 2/27

intel

Digitization and the choices we make

• Formats and Arithmetic
• floating-point
• fixed-point

• Hardware and Software
• CPU/GPU/FPGA/ASIC
• language, compiler

• Generalist and App. Specific
• math. libraries†

• digital filters, control, neural
networks,. . .

PERFORMANCE

GUARANTEED

ACCURACY

Reliability

Automation

Optimization

†Wed, 17:50 ”Sound Approximation of Programs with Elementary Functions”

A. Volkova Reliable and accurate computing 2/27

intel

Digitization and the choices we make

• Formats and Arithmetic
• floating-point
• fixed-point

• Hardware and Software
• CPU/GPU/FPGA/ASIC
• language, compiler

• Generalist and App. Specific
• math. libraries†

• digital filters, control, neural
networks,. . .

PERFORMANCE

GUARANTEED

ACCURACY

Reliability

Automation

Optimization

†Wed, 17:50 ”Sound Approximation of Programs with Elementary Functions”

A. Volkova Reliable and accurate computing 2/27

intel

Signals are everywhere
Analog signals: continuous-time

Time

Digital signals: discrete-time

Time

A. Volkova Reliable and accurate computing 3/27

intel

Signals are everywhere
Analog signals: continuous-time

Time

Digital signals: discrete-time

Time

A. Volkova Reliable and accurate computing 3/27

intel

Linear digital filters

u(k) y(k)

H

Y (z)U(z)

Frequency domain

H (z) =
−z−2 + . . .

1− z−1 + z−2 + . . .

coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations

Time domain
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1 -1

+ + + -1

+ 0.5
y(k)

z−1

z−1

z−1

γ1 =

γ2 =

γ3 =

Constraints w.r.t. surface, speed, accuracy . . .

Circuit / Code

A. Volkova Reliable and accurate computing 4/27

intel

Linear digital filters

u(k) y(k)

H

Y (z)U(z)

Frequency domain

H (z) =
0.0495329964− 0.148598989z−2 + . . .

1− 2.12060288z−1 + 2.7247492z−2 + . . .

coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations

Time domain
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1 -1

+ + + -1

+ 0.5
y(k)

z−1

z−1

z−1

γ1 =

γ2 =

γ3 =

Constraints w.r.t. surface, speed, accuracy . . .

Circuit / Code

A. Volkova Reliable and accurate computing 4/27

intel

Linear digital filters

u(k) y(k)

H

Y (z)U(z)

Frequency domain

H (z) =
0.0495329964− 0.148598989z−2 + . . .

1− 2.12060288z−1 + 2.7247492z−2 + . . .

coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations

Time domain
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1 -1

+ + + -1

+ 0.5
y(k)

z−1

z−1

z−1

γ1 = 0.347586468864209

γ2 = 0.334748427563068

γ3 = 0.084938546237853

Constraints w.r.t. surface, speed, accuracy . . .

Circuit / Code

A. Volkova Reliable and accurate computing 4/27

intel

Linear digital filters

u(k) y(k)

H

Y (z)U(z)

Frequency domain

H (z) =
0.0495329964− 0.148598989z−2 + . . .

1− 2.12060288z−1 + 2.7247492z−2 + . . .

coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations

Time domain
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1 -1

+ + + -1

+ 0.5
y(k)

z−1

z−1

z−1

γ1 = 0.34765625

γ2 = 0.3359375

γ3 = 0.0859375

Constraints w.r.t. surface, speed, accuracy . . .

Circuit / Code

A. Volkova Reliable and accurate computing 4/27

intel

Linear digital filters

u(k) y(k)

H

Y (z)U(z)

Frequency domain

H (z) =
0.0495329964− 0.148598989z−2 + . . .

1− 2.12060288z−1 + 2.7247492z−2 + . . .

coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations

Time domain
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1 -1

+ + + -1

+ 0.5
y(k)

z−1

z−1

z−1

γ1 = 0.34765625

γ2 = 0.3359375

γ3 = 0.0859375

Constraints w.r.t. surface, speed, accuracy . . .

Circuit / Code

A. Volkova Reliable and accurate computing 4/27

intel

Reliable and accurate digital filters
Majority of applications

• do not need numerical guarantee

• well-studied subject

• straightforward implementations

• commercial and free tools

Safety-critical applications

• require numerical guarantees

• have high(er) cost

• limited literature

• require expert knowledge from
engineers

• no out-of-box solution

Context: safety-critical applications

Goal: generate Fixed-Point codes reliable by construction

Means: interval, floating-point, multiple precision arithmetics

A. Volkova Reliable and accurate computing 5/27

intel

Reliable and accurate digital filters
Majority of applications

• do not need numerical guarantee

• well-studied subject

• straightforward implementations

• commercial and free tools

Safety-critical applications

• require numerical guarantees

• have high(er) cost

• limited literature

• require expert knowledge from
engineers

• no out-of-box solution

Context: safety-critical applications

Goal: generate Fixed-Point codes reliable by construction

Means: interval, floating-point, multiple precision arithmetics

A. Volkova Reliable and accurate computing 5/27

intel

Reliable and accurate digital filters
Majority of applications

• do not need numerical guarantee

• well-studied subject

• straightforward implementations

• commercial and free tools

Safety-critical applications

• require numerical guarantees

• have high(er) cost

• limited literature

• require expert knowledge from
engineers

• no out-of-box solution

Context: safety-critical applications

Goal: generate Fixed-Point codes reliable by construction

Means: interval, floating-point, multiple precision arithmetics

A. Volkova Reliable and accurate computing 5/27

intel

Outline

• Finite precision, filters and what’s the issue

• FiXiF toolbox: digital filters reliable by construction
• Worst-case analysis
• Format choice
• Frequency spec verification

• Last-bit accurate hardware
• Cost of the reliability

A. Volkova Reliable and accurate computing 6/27

intel

Arithmetics

• Integer arithmetic:
y = Y w

2w−1 20

• Fixed-Point arithmetic:
y = Y · 2`
where ` is an implicit factor

• Floating-Point arithmetic:
y = (−1)s ·Y · 2e
where e is an explicit factor

• Interval arithmetic:
[y , y] =

{
y ∈ R | y ≤ y ≤ y

}

• Multiple-Precision arithmetic: the size
of the mantissa varies dynamically

A. Volkova Reliable and accurate computing 7/27

intel

Arithmetics

• Integer arithmetic:
y = Y w

2w−1 20

• Fixed-Point arithmetic:
y = Y · 2`
where ` is an implicit factor

m + 1 −`
w

−2m 20 2−1 2`

• Floating-Point arithmetic:
y = (−1)s ·Y · 2e
where e is an explicit factor

• Interval arithmetic:
[y , y] =

{
y ∈ R | y ≤ y ≤ y

}

• Multiple-Precision arithmetic: the size
of the mantissa varies dynamically

A. Volkova Reliable and accurate computing 7/27

intel

Arithmetics

• Integer arithmetic:
y = Y w

2w−1 20

• Fixed-Point arithmetic:
y = Y · 2`
where ` is an implicit factor

m + 1 −`
w

−2m 20 2−1 2`

• Floating-Point arithmetic:
y = (−1)s ·Y · 2e
where e is an explicit factor

exponent mantissa

s

• Interval arithmetic:
[y , y] =

{
y ∈ R | y ≤ y ≤ y

}

• Multiple-Precision arithmetic: the size
of the mantissa varies dynamically

A. Volkova Reliable and accurate computing 7/27

intel

Arithmetics

• Integer arithmetic:
y = Y w

2w−1 20

• Fixed-Point arithmetic:
y = Y · 2`
where ` is an implicit factor

m + 1 −`
w

−2m 20 2−1 2`

• Floating-Point arithmetic:
y = (−1)s ·Y · 2e
where e is an explicit factor

exponent mantissa

s

• Interval arithmetic:
[y , y] =

{
y ∈ R | y ≤ y ≤ y

}

• Multiple-Precision arithmetic: the size
of the mantissa varies dynamically

A. Volkova Reliable and accurate computing 7/27

intel

Arithmetics

• Integer arithmetic:
y = Y w

2w−1 20

• Fixed-Point arithmetic:
y = Y · 2`
where ` is an implicit factor

m + 1 −`
w

−2m 20 2−1 2`

• Floating-Point arithmetic:
y = (−1)s ·Y · 2e
where e is an explicit factor

exponent mantissa

s

• Interval arithmetic:
[y , y] =

{
y ∈ R | y ≤ y ≤ y

}

• Multiple-Precision arithmetic: the size
of the mantissa varies dynamically

A. Volkova Reliable and accurate computing 7/27

intel

Arithmetics

• Integer arithmetic:
y = Y

• Fixed-Point arithmetic:
y = Y · 2`
where ` is an implicit factor

For the implementation

• Floating-Point arithmetic:
y = (−1)s ·Y · 2e
where e is an explicit factor

For the error analysis

• Interval arithmetic:
[y , y] =

{
y ∈ R | y ≤ y ≤ y

} For the error analysis

• Multiple-Precision arithmetic: the size
of the mantissa varies dynamically

For the error analysis

A. Volkova Reliable and accurate computing 7/27

intel

Fixed-Point Arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

w wordlength hard constraint
m Most Significant Bit must choose
` Least Significant Bit must choose

A. Volkova Reliable and accurate computing 8/27

intel

Fixed-Point Arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

w wordlength hard constraint
m Most Significant Bit must choose
` Least Significant Bit must choose

Example

Algorithm: vector normalization ‖v‖ =
√
v21 + v22 + v23

I/O format: w = 32,m = 15, ` = −16

Input: v = (125, 125, 125)

Overflow: 1252 + 1252 + 1252 = 46875 /∈ [−215; 215 − 1]

Output: depends on the system

A. Volkova Reliable and accurate computing 8/27

intel

Fixed-Point Arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

w wordlength hard constraint
m Most Significant Bit must choose
` Least Significant Bit must choose

Example

Algorithm: vector normalization ‖v‖ =
√
v21 + v22 + v23

I/O format: w = 32,m = 15, ` = −16

Input: v = (125, 125, 125)

Overflow: 1252 + 1252 + 1252 = 46875 /∈ [−215; 215 − 1]

Output: depends on the system

A. Volkova Reliable and accurate computing 8/27

intel

Fixed-Point Arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

w wordlength hard constraint
m Most Significant Bit must choose
` Least Significant Bit must choose

Example

Algorithm: vector normalization ‖v‖ =
√
v21 + v22 + v23

I/O format: w = 32,m = 15, ` = −16

Input: v = (125, 125, 125)

Overflow: 1252 + 1252 + 1252 = 46875 /∈ [−215; 215 − 1]

Output: depends on the system

A. Volkova Reliable and accurate computing 8/27

intel

Fixed-Point Arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

w wordlength hard constraint
m Most Significant Bit must choose
` Least Significant Bit must choose

Format choice problem:

• fix wordlength

• guarantee no overflow

• maximize the precision

• bound the output error

A. Volkova Reliable and accurate computing 8/27

intel

Filter algorithms
Typical algorithm: input u(k), internal state x (k), output y(k)

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k) y(k)

• y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

•
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

• . . .

Math: ”It’s all the same thing”

”Not anymore!”, finite-precision.

A. Volkova Reliable and accurate computing 9/27

intel

Filter algorithms
Typical algorithm: input u(k), internal state x (k), output y(k)

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k)
B + z�1 C +

y(k)

D

A

• y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

•
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

• . . .

Math: ”It’s all the same thing”

”Not anymore!”, finite-precision.

A. Volkova Reliable and accurate computing 9/27

intel

Filter algorithms
Typical algorithm: input u(k), internal state x (k), output y(k)

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k)
B + z�1 C +

y(k)

D

A

+

z�1

+

z�1

+

z�1

+

b0

b1

bi

bn

�a1

�ai

�an

y(k)u(k)

• y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

•
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

• . . .

Math: ”It’s all the same thing”

”Not anymore!”, finite-precision.

A. Volkova Reliable and accurate computing 9/27

intel

Filter algorithms
Typical algorithm: input u(k), internal state x (k), output y(k)

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k)
B + z�1 C +

y(k)

D

A

+

z�1

+

z�1

+

z�1

+

b0

b1

bi

bn

�a1

�ai

�an

y(k)u(k)

u(k)
-1 + +

+ -1 -1

�1 + �2 + -1 �3 +

-1

z�1

-1 z�1

+ + z�1 + -1

+ 0.5
y(k)

• y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

•
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

• . . .

Math: ”It’s all the same thing”

”Not anymore!”, finite-precision.

A. Volkova Reliable and accurate computing 9/27

intel

Filter algorithms
Typical algorithm: input u(k), internal state x (k), output y(k)

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k)
B + z�1 C +

y(k)

D

A

+

z�1

+

z�1

+

z�1

+

b0

b1

bi

bn

�a1

�ai

�an

y(k)u(k)

u(k)
-1 + +

+ -1 -1

�1 + �2 + -1 �3 +

-1

z�1

-1 z�1

+ + z�1 + -1

+ 0.5
y(k)

• y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

•
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

• . . .

Math: ”It’s all the same thing”

”Not anymore!”, finite-precision.

A. Volkova Reliable and accurate computing 9/27

intel

Example: a 15th order lowpass filter

Algorithm # coefficients
State-Space (canonical) 31
State-Space (balanced) 256

Direct Form II (transposed) 31
Li-Gevers-Sun 102

A. Volkova Reliable and accurate computing 10/27

intel

Example: a 15th order lowpass filter

Algorithm # coefficients
State-Space (canonical) 31
State-Space (balanced) 256

Direct Form II (transposed) 31
Li-Gevers-Sun 102

Coefficient quantization

A. Volkova Reliable and accurate computing 10/27

intel

Example: a 15th order lowpass filter

Algorithm # coefficients
State-Space (canonical) 31
State-Space (balanced) 256

Direct Form II (transposed) 31
Li-Gevers-Sun 102

Coefficient quantization Rounding errors

A. Volkova Reliable and accurate computing 10/27

intel

Existing approaches on FxP
implementation

• simulations [Matlab], [D. Báez-López,2001]
• non-exhaustive

• noise propagation models [Menard, 2008]
• does not give intervals for outputs

• interval arithmetic [Carreras, 1999], [Vakili, 2013]
• wrapping effect for recursive systems

• affine arithmetic [Puschel, 2003], [Constantinides, 2006]
• need to bound `∞ norm of the filter’s output
• static unroll of the loops

A. Volkova Reliable and accurate computing 11/27

intel

TOOLBOX

“Digital filters reliable by construction ”

Available at https://github.com/fixif

Joint work with

Thibault Hilaire
thibault.hilaire@lip6.fr

Christoph Lauter
chirstoph.lauter@lip6.fr

A. Volkova Reliable and accurate computing 12/27

https://github.com/fixif
thibault.hilaire@lip6.fr
chirstoph.lauter@lip6.fr

intel

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based data-flow description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCo

A. Volkova Reliable and accurate computing 13/27

intel

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based data-flow description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCo

A. Volkova Reliable and accurate computing 13/27

intel

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based data-flow description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCo

A. Volkova Reliable and accurate computing 13/27

intel

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based data-flow description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCo

A. Volkova Reliable and accurate computing 13/27

intel

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based data-flow description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCo

A. Volkova Reliable and accurate computing 13/27

intel

Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based data-flow description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCoa

a
http://flopoco.gforge.inria.fr/

A. Volkova Reliable and accurate computing 13/27

http://flopoco.gforge.inria.fr/

intel

FiXiF tool: under the hood

Front-end

• Python

• Collection of classes

Back-end

• C/C++ libraries

• Sollya procedures

• FloPoCo tool

Requirements:

• MPFR, MPFI,

LAPACK

• mpmath

Python

FxP
Arithmetic

WCPG
evaluation

C

Python

FxP
Formats

C
FiXiF

Python

Verification

Sollya
FloPoCo
interface

C++

A. Volkova Reliable and accurate computing 14/27

intel

FiXiF – 1
◦ Filter specifications and transfer function design

from fixif import *

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

H = g.to_dTF(ftype="butter", method="scipy")

F = Filter(tf=H)

R_SS = State_Space(Filter(tf=H))

R_SS_balanced = State_Space(Filter(tf=H), form="balanced")

R_DFII = DFII(Filter(tf=H), transposed=True)

R_LGS = LGS(Filter(tf=H), transposed=True)

A. Volkova Reliable and accurate computing 15/27

intel

FiXiF – 1
◦ Filter specifications and transfer function design

from fixif import *

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

H = g.to_dTF(ftype="butter", method="scipy")

F = Filter(tf=H)

Type: lowpass (Fs=48000Hz)

Freq. [0Hz,9600Hz]: Passband in [0.95dB, 1.05dB]

Freq. [12000Hz,24000.0Hz]: Stopband at -20dB

4.58056194e-05 + 6.87084291e-04 z-̂1 + 4.8095900e-03z-̂2 + ...

H(z) = ---

1.0 + -1.6206385z-̂1 + 3.20872535z-̂2 + ...

R_SS = State_Space(Filter(tf=H))

R_SS_balanced = State_Space(Filter(tf=H), form="balanced")

R_DFII = DFII(Filter(tf=H), transposed=True)

R_LGS = LGS(Filter(tf=H), transposed=True)

A. Volkova Reliable and accurate computing 15/27

intel

FiXiF – 1
◦ Filter specifications and transfer function design

from fixif import *

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

H = g.to_dTF(ftype="butter", method="scipy")

F = Filter(tf=H)

◦ Filter realization (algorithm)

R_SS = State_Space(Filter(tf=H))

R_SS_balanced = State_Space(Filter(tf=H), form="balanced")

R_DFII = DFII(Filter(tf=H), transposed=True)

R_LGS = LGS(Filter(tf=H), transposed=True)

A. Volkova Reliable and accurate computing 15/27

intel

State-Space and an error model
Take a State-Space algorithm

H

♦

{
x

♦

(k + 1) =

♦mx (

Ax

♦

(k) + Bu(k)

) + εx (k)

y

♦

(k) =

♦my (

Cx

♦

(k) + Du(k)

) + εy(k)

A. Volkova Reliable and accurate computing 16/27

intel

State-Space and an error model
Take a State-Space algorithm and add rounding

H♦
{

x♦(k + 1) = ♦mx (Ax♦(k) + Bu(k))

+ εx (k)

y♦(k) = ♦my (Cx♦(k) + Du(k))

+ εy(k)

where ♦m is some operator ensuring faithful rounding:

|♦m(x)− x | ≤ 2`

A. Volkova Reliable and accurate computing 16/27

intel

State-Space and an error model
Take a State-Space algorithm and add rounding

H♦
{

x♦(k + 1) =

♦mx (

Ax♦(k) + Bu(k)

)

+ εx (k)
y♦(k) =

♦my (

Cx♦(k) + Du(k)

)

+ εy(k)

with
|εx (k)| ≤ 2`x and |εy(k)| ≤ 2`y

A. Volkova Reliable and accurate computing 16/27

intel

State-Space and an error model
Take a State-Space algorithm and add rounding

H♦
{

x♦(k + 1) =

♦mx (

Ax♦(k) + Bu(k)

)

+ εx (k)
y♦(k) =

♦my (

Cx♦(k) + Du(k)

)

+ εy(k)

with
|εx (k)| ≤ 2`x and |εy(k)| ≤ 2`y

We express x (k)− x♦ and y(k)− y♦(k) ... using a new filter:

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
"y (k)

∂

rounding errors

H⌃
|y⌃(k)|  |�(k)| + |y(k)||y⌃(k)|  |�q(k)| + |y(k)|

A. Volkova Reliable and accurate computing 16/27

intel

Reliable implementation

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
"y (k)

∂

rounding errors

H⌃
|∆(k)| ≤ 〈〈H∆〉〉

(
2`x

2`y

)

Basic bricks:
• Reliable bound on a linear filter’s output

• Worst-Case Peak Gain measure [V-Lauter-Hilaire’15]

• Take into account error propagation
• Iterative refinement of MSB [V-Lauter-Hilaire’16]

• Never overestimate MSB by more than one

A. Volkova Reliable and accurate computing 17/27

intel

Worst-Case Peak Gain
• Matrix 〈〈S〉〉 =

∑∞
k=0

∣∣CAkB
∣∣ [Balakrishnyan-Boyd’91]

Problem: approximation and evaluation of the WCPG with an a
priori absolute error bound ε∣∣∣〈〈S〉〉 − 〈〈Ŝ〉〉

∣∣∣ ≤ |〈〈S〉〉 − 〈〈SN 〉〉|+
∣∣∣〈〈SN 〉〉 − 〈〈Ŝ〉〉

∣∣∣ < ε

Solution [V-Hilaire-Lauter’15]:
1X

k=0

|CAkB| bSN"1 "2 "3 "4 "5 "6

truncation

direct formula

sum evaluation

adaptation of internal precision
s.t. error bound is satisfied a priori"i

Techniques: a priori floating-point error analysis, verified
inclusions for eigendecomposition, Gershgorin circles computation

A. Volkova Reliable and accurate computing 18/27

intel

FiXiF – 2
◦ Determine the Fixed-Point Formats

w = 16

while True:

msb, lsb, error, additionalSteps = FXPF_ABCD(R_SS.A,

R_SS.B, R_SS.C, R_SS.D, 1.0, w)

w = w - 1

Wordlength=[16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16]

Additional steps: 1

LSB: [-13 -13 -14 -14 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15]

Errors: [[0.00086691 0.00121799 0.00152309 0.00172836 0.00158205

0.00121137 0.00079471 0.00048683 0.00029988 0.0001935 0.00013235

0.00009573 0.00007329 0.00005811 0.00004509 0.00152433]]
.
.
.

Wordlength=[5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5]

Error: LSB reached point when it is larger than initial MSB estimation

Error determining Fixed-Point Formats.

A. Volkova Reliable and accurate computing 19/27

intel

FiXiF – 2
◦ Determine the Fixed-Point Formats

w = 16

while True:

msb, lsb, error, additionalSteps = FXPF_ABCD(R_SS.A,

R_SS.B, R_SS.C, R_SS.D, 1.0, w)

w = w - 1

Wordlength=[16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16]

Additional steps: 1

LSB: [-13 -13 -14 -14 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15]

Errors: [[0.00086691 0.00121799 0.00152309 0.00172836 0.00158205

0.00121137 0.00079471 0.00048683 0.00029988 0.0001935 0.00013235

0.00009573 0.00007329 0.00005811 0.00004509 0.00152433]]
.
.
.

Wordlength=[5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5]

Error: LSB reached point when it is larger than initial MSB estimation

Error determining Fixed-Point Formats.

A. Volkova Reliable and accurate computing 19/27

intel

Verification of specifications

Implementation :
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1

z−1

-1 z−1

+ + z−1 + -1

+ 0.5
y(k)

Verify the specifications:

!

��H(ei!)
��

⇡

no false positives

Solution [V-Lauter-Hilaire’17]

• MP approximation of Ĥ (z)
→ error Θ bounded using
WCPG [Balakrishnyan’92]

• Verification of Ĥ (z)
→ proof of non-negativity of a
polynomial

� + ⇥

� �⇥

�

�

| bH(ei!)|

!

A. Volkova Reliable and accurate computing 20/27

intel

Verification of specifications

Implementation :
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1

z−1

-1 z−1

+ + z−1 + -1

+ 0.5
y(k)

Verify the specifications:

!

��H(ei!)
��

⇡

no false positives

Solution [V-Lauter-Hilaire’17]

• MP approximation of Ĥ (z)
→ error Θ bounded using
WCPG [Balakrishnyan’92]

• Verification of Ĥ (z)
→ proof of non-negativity of a
polynomial

� + ⇥

� �⇥

�

�

| bH(ei!)|

!

A. Volkova Reliable and accurate computing 20/27

intel

Verification of specifications

Implementation :
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1

z−1

-1 z−1

+ + z−1 + -1

+ 0.5
y(k)

Verify the specifications:

!

��H(ei!)
��

⇡

no false positives

Solution [V-Lauter-Hilaire’17]

• MP approximation of Ĥ (z)
→ error Θ bounded using
WCPG [Balakrishnyan’92]

• Verification of Ĥ (z)
→ proof of non-negativity of a
polynomial

� + ⇥

� �⇥

�

�

| bH(ei!)|

!
A. Volkova Reliable and accurate computing 20/27

intel

FiXiF – 3
◦ Verification

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

CheckIfRealizationInGabarit(g, R_SS.quantize(16))

Overall check okay: false

Computing this result took 2258ms

The following issues have been found:

Issue in subdomain Omega = pi * [0;0.4] at omega = pi *

[0;5.3172964416593691658936355013934529087741417880979e-53]:

|H(exp(j*omega))| should be between 10^ 4.75e-2 and 10^ (1.05 / 20) but

evaluates to [1.0000497795523700519233990284759435759640164376565;

1.0000497795523700519233990284759435759640164376566] =

10^ ([4.323689366417695635232485092238116632596970479257e-4;

4.3236893664176956352324850922381166325969704866858e-4]/20)
.
.
.

A. Volkova Reliable and accurate computing 21/27

intel

FiXiF – 3
◦ Verification

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

CheckIfRealizationInGabarit(g, R_SS.quantize(16))

Overall check okay: false

Computing this result took 2258ms

The following issues have been found:

Issue in subdomain Omega = pi * [0;0.4] at omega = pi *

[0;5.3172964416593691658936355013934529087741417880979e-53]:

|H(exp(j*omega))| should be between 10^ 4.75e-2 and 10^ (1.05 / 20) but

evaluates to [1.0000497795523700519233990284759435759640164376565;

1.0000497795523700519233990284759435759640164376566] =

10^ ([4.323689366417695635232485092238116632596970479257e-4;

4.3236893664176956352324850922381166325969704866858e-4]/20)
.
.
.

A. Volkova Reliable and accurate computing 21/27

intel

Behind the scenes
During these 2.26 seconds...
• Rational arithmetic

• proof of non-negativity of a real polynomial

• Interval arithmetic
• Verified Inclusions for the eigenvalues

• Dynamic Multiple-Precision arithmetic
• Computation of Gershgorin circles
• Evaluation of WCPG

• Floating-Point arithmetic
• Computation of eigenvalues with LAPACK
• Matrix arithmetic with a priori error bounds

. . . to verify an implementation in Fixed-Point arithmetic!

A. Volkova Reliable and accurate computing 22/27

intel

Back to the generator

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Rigorous use of a combination of different arithmetics

• Numerical guarantees in time and frequency domains

• Unifying internal representation

• Easily extendable modular implementation

NEW Non-linear optimization to minimize circuit area [Hilaire, 2019]

A. Volkova Reliable and accurate computing 23/27

intel

Last-bit accurate hardware

FloPoCo

http://flopoco.gforge.inria.fr/

Joint work with

Florent de Dinechin
Florent.de-Dinechin@

insa-lyon.fr

Matei Istoan
Florent.de-Dinechin@insa-

lyon.fr

A. Volkova Reliable and accurate computing 24/27

http://flopoco.gforge.inria.fr/
Florent.de-Dinechin@insa-lyon.fr
Florent.de-Dinechin@insa-lyon.fr

intel

Last-bit accurate hardware

FloPoCo

http://flopoco.gforge.inria.fr/

A push-button tool that generates filters accurate just-enough

LTI Filter
architecture
generator

{ai}1≤i<na
, {bi}0≤i<nb

input format (1, `in)

output accuracy `out
FPGA frequency

.vhdl

Functional spec. Performance spec.

A. Volkova Reliable and accurate computing 25/27

http://flopoco.gforge.inria.fr/

intel

The cost of reliability
Area and Delay vs. Accuracy

 0

 2

 4

 6

 8

 10

 12

 8 12 16 20 24 28 32
 0

 2000

 4000

 6000

 8000

 10000

 12000

cr
it

ic
a
l
p

a
th

 d
e
la

y
 (

n
s)

a
re

a
 (

LU
T
)

input/output precision (fraction bits)

IIR8b area
IIR8b delay
IIR8a area

IIR8a delay
IIR4 area

IIR4 delay

A. Volkova Reliable and accurate computing 26/27

intel

The cost of reliability
Pessimism of the method:
• (almost) worst-case input signal
• removing ≥ 2 bits yields failure

⇒ bounds are tight

SQNR vs. Guaranteed accuracy

[Constantinides, 2004] Our approach

16 bit output 8 (13) bit output
SQNR 49.3dB to 78.5dB error bound ≤ 2−8 (≤ 2−13)
8 to 13 meaningful bits last-bit accurate

16 bit multipliers
16/32 bit accumulators

18 (23) bits datapaths

⇒ we are competitive

A. Volkova Reliable and accurate computing 27/27

intel

The cost of reliability
Pessimism of the method:
• (almost) worst-case input signal
• removing ≥ 2 bits yields failure

⇒ bounds are tight

SQNR vs. Guaranteed accuracy

[Constantinides, 2004] Our approach

16 bit output 8 (13) bit output
SQNR 49.3dB to 78.5dB error bound ≤ 2−8 (≤ 2−13)
8 to 13 meaningful bits last-bit accurate

16 bit multipliers
16/32 bit accumulators

18 (23) bits datapaths

⇒ we are competitive

A. Volkova Reliable and accurate computing 27/27

intel

The cost of reliability
Pessimism of the method:
• (almost) worst-case input signal
• removing ≥ 2 bits yields failure

⇒ bounds are tight

SQNR vs. Guaranteed accuracy

[Constantinides, 2004] Our approach

16 bit output 8 (13) bit output
SQNR 49.3dB to 78.5dB error bound ≤ 2−8 (≤ 2−13)
8 to 13 meaningful bits last-bit accurate

16 bit multipliers
16/32 bit accumulators

18 (23) bits datapaths

⇒ we are competitive

A. Volkova Reliable and accurate computing 27/27

intel

The cost of reliability
Pessimism of the method:
• (almost) worst-case input signal
• removing ≥ 2 bits yields failure

⇒ bounds are tight

SQNR vs. Guaranteed accuracy

[Constantinides, 2004] Our approach

16 bit output 8 (13) bit output
SQNR 49.3dB to 78.5dB error bound ≤ 2−8 (≤ 2−13)
8 to 13 meaningful bits last-bit accurate

16 bit multipliers
16/32 bit accumulators

18 (23) bits datapaths

⇒ we are competitive

A. Volkova Reliable and accurate computing 27/27

TOOLBOX

“Digital filters reliable by construction ”

https://github.com/fixif

Anastasia Volkova
anastasia.volkova@inria.fr

avolkova.org

Thibault Hilaire
thibault.hilaire@lip6.fr

docmatic.fr

Christoph Lauter
chirstoph.lauter@lip6.fr

christoph-lauter.org

https://github.com/fixif
anastasia.volkova@inria.fr
avolkova.org
thibault.hilaire@lip6.fr
docmatic.fr
chirstoph.lauter@lip6.fr
christoph-lauter.org

	Appendix

	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	anm2:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	anm1:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	anm0:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

