

Reliable and accurate computing. Computer arithmetic approach for digital filters.

Anastasia Volkova

4th Workshop on the Design and Analysis of Robust Systems
July 13, 2019

Impact of numerical errors

Funny fact:

- Broken YouTube

Impact of numerical errors

Funny fact:

- Broken YouTube

Not funny:

- Explosion of Ariane 5
- Boeing 787 problems
- Patriot missiles

Digitization and the choices we make

Digitization and the choices we make

- Formats and Arithmetic
 - floating-point
 - fixed-point

Digitization and the choices we make

- Formats and Arithmetic
 - floating-point
 - fixed-point
- Hardware and Software
 - CPU/GPU/FPGA/ASIC
 - language, compiler

Digitization and the choices we make

- Formats and Arithmetic
 - floating-point
 - fixed-point
- Hardware and Software
 - CPU/GPU/FPGA/ASIC
 - language, compiler
- Generalist and App. Specific
 - math. libraries[†]
 - digital filters, control, neural networks,...

[†]Wed, 17:50 "Sound Approximation of Programs with Elementary Functions"

Digitization and the choices we make

- Formats and Arithmetic
 - floating-point
 - fixed-point
- Hardware and Software
 - CPU/GPU/FPGA/ASIC
 - language, compiler
- Generalist and App. Specific
 - math. libraries[†]
 - digital filters, control, neural networks,...

Reliability
Automation
Optimization

[†]Wed, 17:50 "Sound Approximation of Programs with Elementary Functions"

Digitization and the choices we make

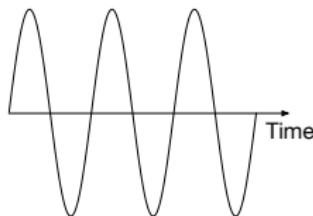
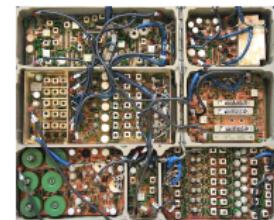
- Formats and Arithmetic
 - floating-point
 - fixed-point
- Hardware and Software
 - CPU/GPU/FPGA/ASIC
 - language, compiler
- Generalist and App. Specific
 - math. libraries[†]
 - **digital filters**, control, neural networks,...

Reliability
Automation
Optimization

[†]Wed, 17:50 "Sound Approximation of Programs with Elementary Functions"

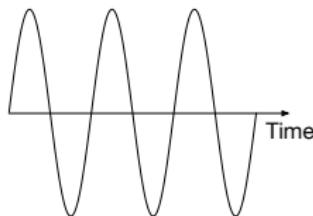
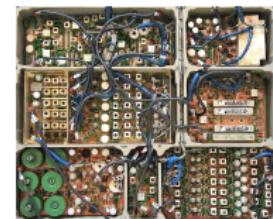
Signals are everywhere

Analog signals: continuous-time

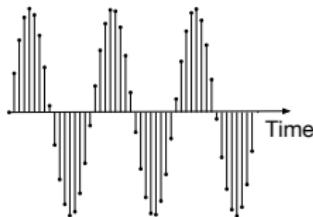
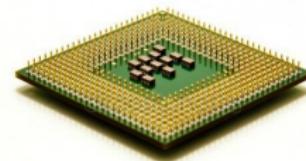


Signals are everywhere

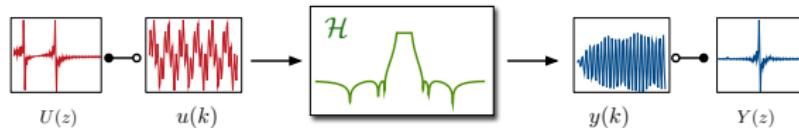
Analog signals: continuous-time



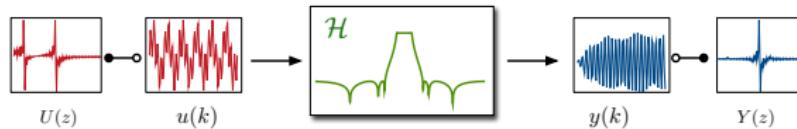
Digital signals: discrete-time



Linear digital filters



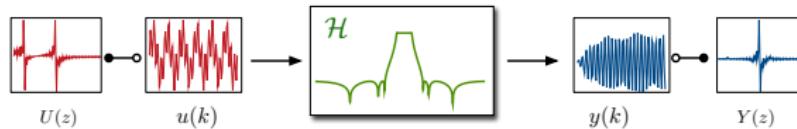
Linear digital filters



Frequency domain

$$H(z) = \frac{0.0495329964 - 0.148598989z^{-2} + \dots}{1 - 2.12060288z^{-1} + 2.7247492z^{-2} + \dots}$$

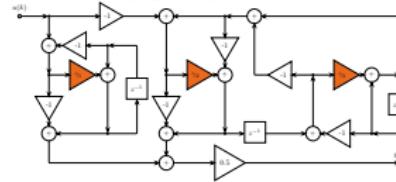
Linear digital filters



Frequency domain

$$H(z) = \frac{0.0495329964 - 0.148598989z^{-2} + \dots}{1 - 2.12060288z^{-1} + 2.7247492z^{-2} + \dots}$$

Time domain

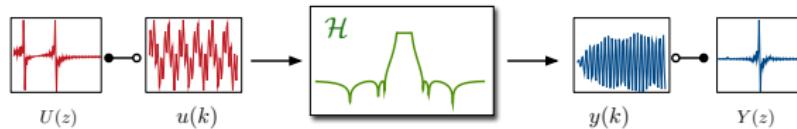


$$\gamma_1 = 0.347586468864209$$

$$\gamma_2 = 0.334748427563068$$

$$\gamma_3 = 0.084938546237853$$

Linear digital filters

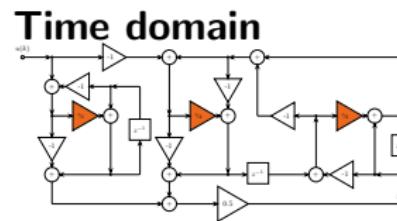


Frequency domain

$$H(z) = \frac{0.0495329964 - 0.148598989z^{-2} + \dots}{1 - 2.12060288z^{-1} + 2.7247492z^{-2} + \dots}$$

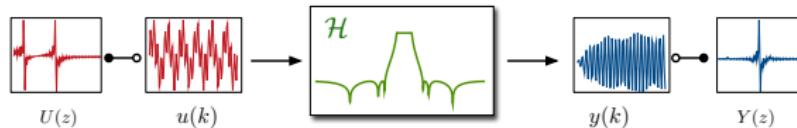
coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations



$$\begin{aligned}\gamma_1 &= 0.34765625 \\ \gamma_2 &= 0.3359375 \\ \gamma_3 &= 0.0859375\end{aligned}$$

Linear digital filters

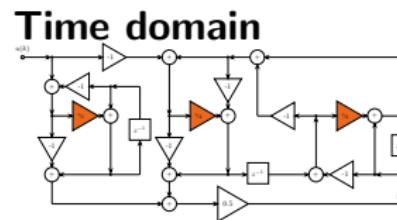


Frequency domain

$$H(z) = \frac{0.0495329964 - 0.148598989z^{-2} + \dots}{1 - 2.12060288z^{-1} + 2.7247492z^{-2} + \dots}$$

coefficient quantization
in Fixed-Point arithmetic

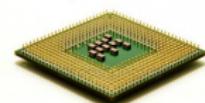
Finite-precision
arithmetic operations



Constraints w.r.t. surface, speed, accuracy ...

$$\begin{aligned}\gamma_1 &= 0.34765625 \\ \gamma_2 &= 0.3359375 \\ \gamma_3 &= 0.0859375\end{aligned}$$

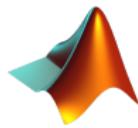
Circuit / Code



Reliable and accurate digital filters

Majority of applications

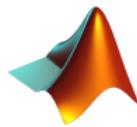
- do not need numerical guarantee
- well-studied subject
- straightforward implementations
- commercial and free tools



Reliable and accurate digital filters

Majority of applications

- do not need numerical guarantee
- well-studied subject
- straightforward implementations
- commercial and free tools



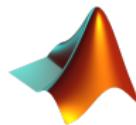
Safety-critical applications

- require numerical guarantees
- have high(er) cost
- limited literature
- require expert knowledge from engineers
- no out-of-box solution

Reliable and accurate digital filters

Majority of applications

- do not need numerical guarantee
- well-studied subject
- straightforward implementations
- commercial and free tools



Safety-critical applications

- require numerical guarantees
- have high(er) cost
- limited literature
- require expert knowledge from engineers
- no out-of-box solution

Context: safety-critical applications

Goal: generate Fixed-Point codes reliable by construction

Means: interval, floating-point, multiple precision arithmetics

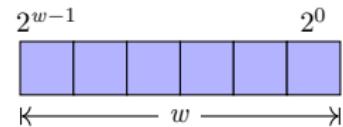
Outline

- Finite precision, filters and what's the issue
- FiXiF toolbox: digital filters reliable by construction
 - Worst-case analysis
 - Format choice
 - Frequency spec verification
- Last-bit accurate hardware
 - Cost of the reliability

Arithmetics

- Integer arithmetic:

$$y = Y$$



Arithmetics

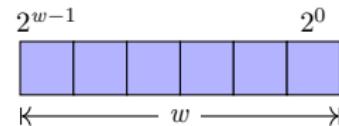
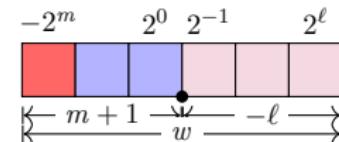
- Integer arithmetic:

$$y = Y$$

- Fixed-Point arithmetic:

$$y = Y \cdot 2^\ell$$

where ℓ is an *implicit* factor



Arithmetics

- Integer arithmetic:

$$y = Y$$

- Fixed-Point arithmetic:

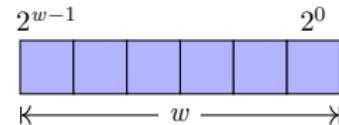
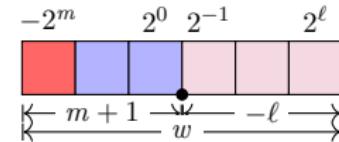
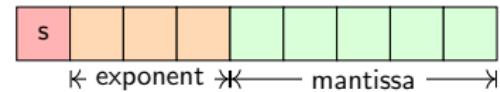
$$y = Y \cdot 2^\ell$$

where ℓ is an *implicit* factor

- Floating-Point arithmetic:

$$y = (-1)^s \cdot Y \cdot 2^e$$

where e is an *explicit* factor



Arithmetics

- Integer arithmetic:

$$y = Y$$

- Fixed-Point arithmetic:

$$y = Y \cdot 2^\ell$$

where ℓ is an *implicit* factor

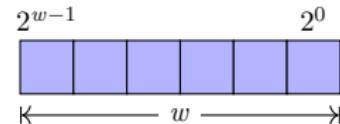
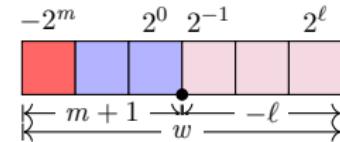
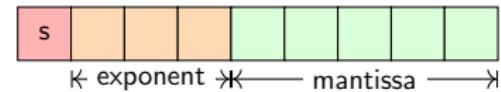
- Floating-Point arithmetic:

$$y = (-1)^s \cdot Y \cdot 2^e$$

where e is an *explicit* factor

- Interval arithmetic:

$$[\underline{y}, \bar{y}] = \{ y \in \mathbb{R} \mid \underline{y} \leq y \leq \bar{y} \}$$



Arithmetics

- Integer arithmetic:

$$y = Y$$

- Fixed-Point arithmetic:

$$y = Y \cdot 2^\ell$$

where ℓ is an *implicit* factor

- Floating-Point arithmetic:

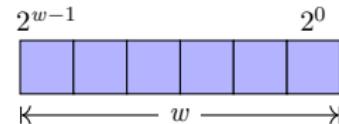
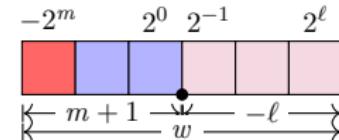
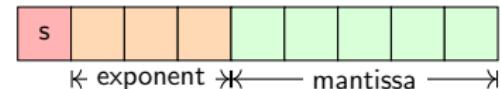
$$y = (-1)^s \cdot Y \cdot 2^e$$

where e is an *explicit* factor

- Interval arithmetic:

$$[\underline{y}, \bar{y}] = \{y \in \mathbb{R} \mid \underline{y} \leq y \leq \bar{y}\}$$

- Multiple-Precision arithmetic: the size of the mantissa varies dynamically



Arithmetics

- Fixed-Point arithmetic:

$$y = Y \cdot 2^\ell$$

where ℓ is an *implicit* factor

For the implementation

- Floating-Point arithmetic:

$$y = (-1)^s \cdot Y \cdot 2^e$$

where e is an *explicit* factor

For the error analysis

- Interval arithmetic:

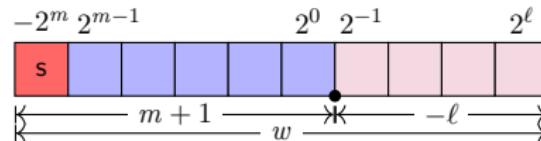
$$[\underline{y}, \bar{y}] = \{y \in \mathbb{R} \mid \underline{y} \leq y \leq \bar{y}\}$$

For the error analysis

- Multiple-Precision arithmetic: the size of the mantissa varies dynamically

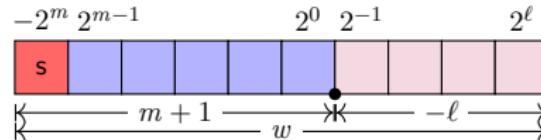
For the error analysis

Fixed-Point Arithmetic



w	wordlength	hard constraint
m	Most Significant Bit	must choose
ℓ	Least Significant Bit	must choose

Fixed-Point Arithmetic

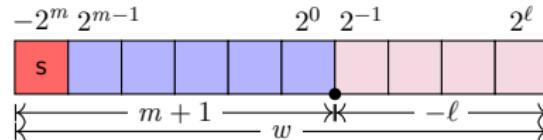


w	wordlength	hard constraint
m	Most Significant Bit	must choose
ℓ	Least Significant Bit	must choose

Example

Algorithm: vector normalization $\|v\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

Fixed-Point Arithmetic



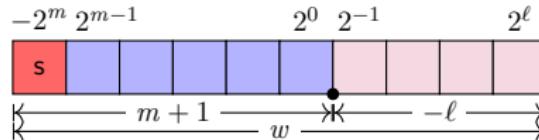
w	wordlength	hard constraint
m	Most Significant Bit	must choose
ℓ	Least Significant Bit	must choose

Example

Algorithm: vector normalization $\|v\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

I/O format: $w = 32, m = 15, \ell = -16$

Fixed-Point Arithmetic



w	wordlength	hard constraint
m	Most Significant Bit	must choose
ℓ	Least Significant Bit	must choose

Example

Algorithm: vector normalization $\|v\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

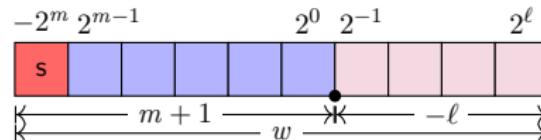
I/O format: $w = 32, m = 15, \ell = -16$

Input: $v = (125, 125, 125)$

Overflow: $125^2 + 125^2 + 125^2 = 46875 \notin [-2^{15}; 2^{15} - 1]$

Output: depends on the system

Fixed-Point Arithmetic



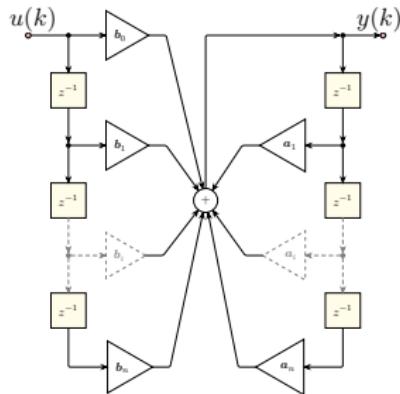
w	wordlength	hard constraint
m	Most Significant Bit	must choose
ℓ	Least Significant Bit	must choose

Format choice problem:

- fix wordlength
- guarantee no overflow
- maximize the precision
- bound the output error

Filter algorithms

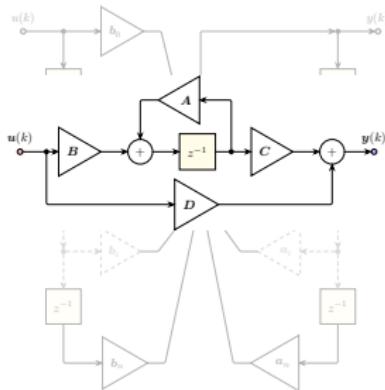
Typical algorithm: input $u(k)$, internal state $x(k)$, output $y(k)$



- $y(k) = \sum_{i=0}^n b_i u(k - i) - \sum_{i=1}^n a_i y(k - i)$

Filter algorithms

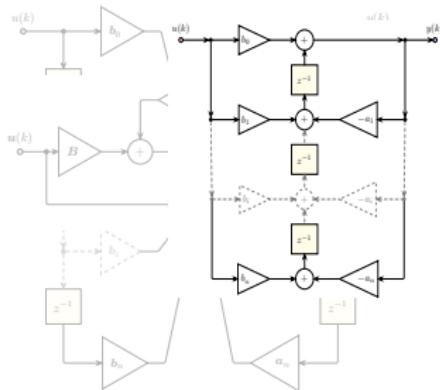
Typical algorithm: input $u(k)$, internal state $\mathbf{x}(k)$, output $y(k)$



- $y(k) = \sum_{i=0}^n b_i u(k - i) - \sum_{i=1}^n a_i y(k - i)$
- $\begin{cases} \mathbf{x}(k + 1) = \mathbf{A}\mathbf{x}(k) + \mathbf{b}u(k) \\ y(k) = \mathbf{c}\mathbf{x}(k) + du(k) \end{cases}$

Filter algorithms

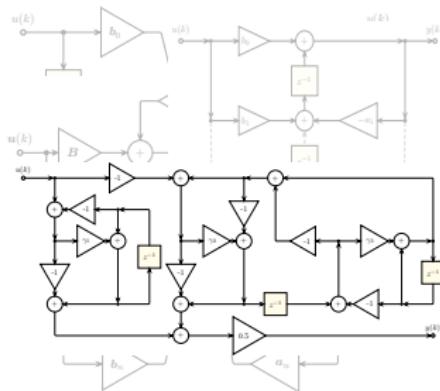
Typical algorithm: input $u(k)$, internal state $x(k)$, output $y(k)$



- $y(k) = \sum_{i=0}^n b_i u(k-i) - \sum_{i=1}^n a_i y(k-i)$
- $\begin{cases} \mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{b}u(k) \\ y(k) = \mathbf{c}\mathbf{x}(k) + du(k) \end{cases}$
- ...

Filter algorithms

Typical algorithm: input $u(k)$, internal state $x(k)$, output $y(k)$

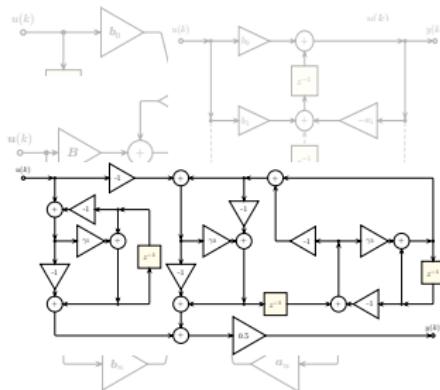


- $y(k) = \sum_{i=0}^n b_i u(k-i) - \sum_{i=1}^n a_i y(k-i)$
- $$\begin{cases} \mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{b}u(k) \\ y(k) = \mathbf{c}\mathbf{x}(k) + du(k) \end{cases}$$
- ...

Math: "It's all the same thing"

Filter algorithms

Typical algorithm: input $u(k)$, internal state $x(k)$, output $y(k)$



- $y(k) = \sum_{i=0}^n b_i u(k-i) - \sum_{i=1}^n a_i y(k-i)$
- $\begin{cases} \mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{b}u(k) \\ y(k) = \mathbf{c}\mathbf{x}(k) + du(k) \end{cases}$
- ...

Math: "It's all the same thing"

"Not anymore!", **finite-precision**.

Example: a 15th order lowpass filter

Algorithm	# coefficients
State-Space (canonical)	31
State-Space (balanced)	256
Direct Form II (transposed)	31
Li-Gevers-Sun	102

Example: a 15th order lowpass filter

Algorithm	# coefficients
State-Space (canonical)	31
State-Space (balanced)	256
Direct Form II (transposed)	31
Li-Gevers-Sun	102

Coefficient quantization

Example: a 15th order lowpass filter

Algorithm	# coefficients
State-Space (canonical)	31
State-Space (balanced)	256
Direct Form II (transposed)	31
Li-Gevers-Sun	102

Coefficient quantization

Rounding errors

Existing approaches on FxP implementation

FIXIF

TOOLBOX

“Digital filters reliable by construction”

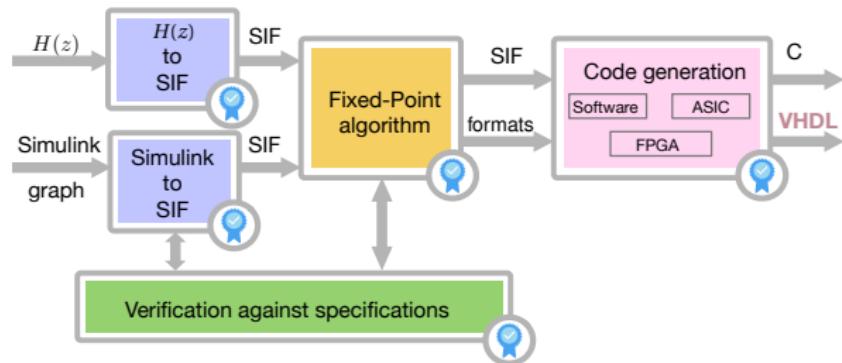
Available at <https://github.com/fixif>

Joint work with

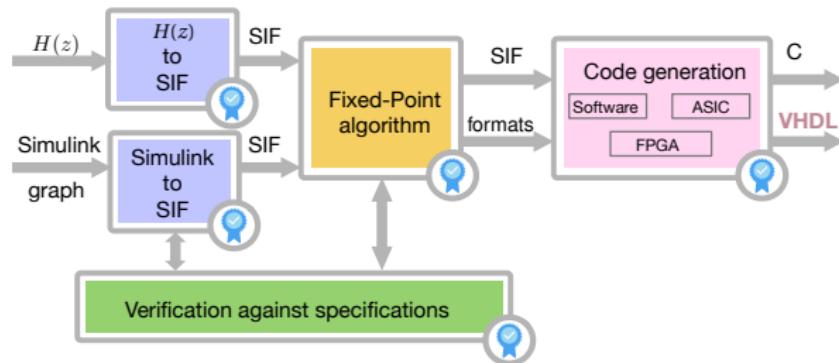
Thibault Hilaire
thibault.hilaire@lip6.fr

Christoph Lauter
christoph.lauter@lip6.fr

Compiler overview

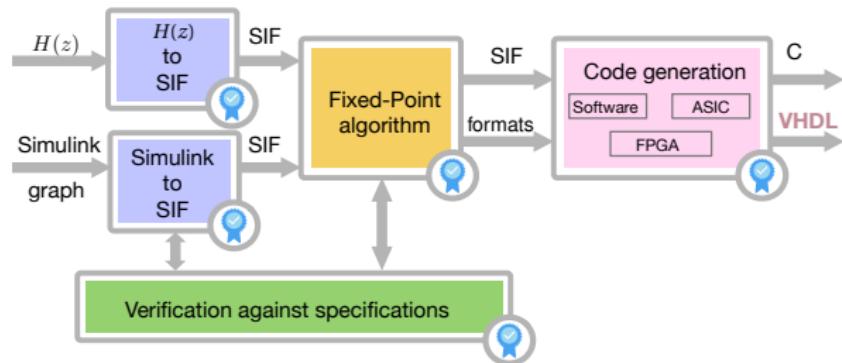


Compiler overview



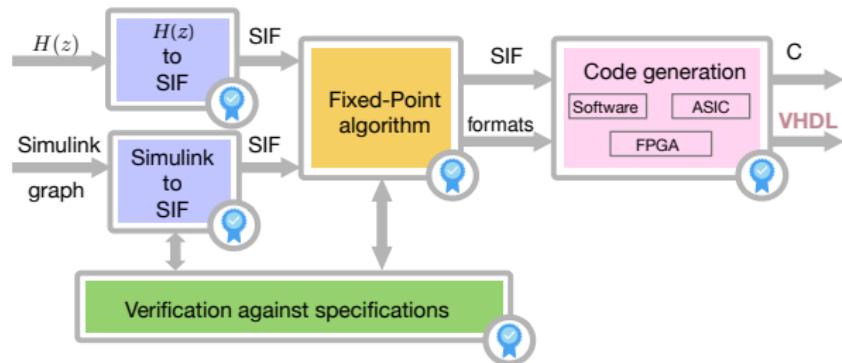
- Internal representation: SIF (matrix-based data-flow description)

Compiler overview



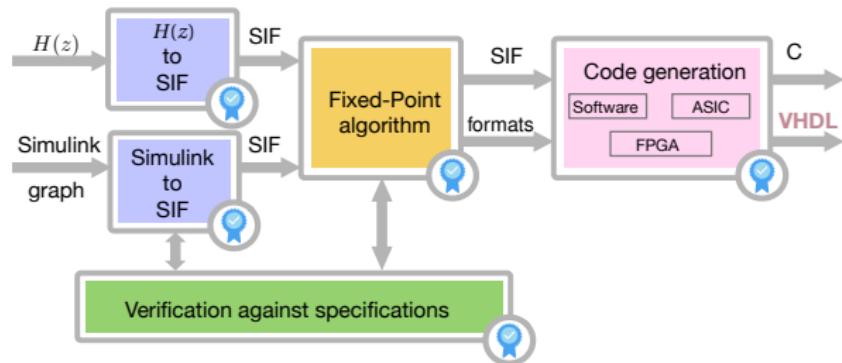
- Internal representation: SIF (matrix-based data-flow description)
- Rounding errors: unified, reliable and fast FxP algorithm generation

Compiler overview



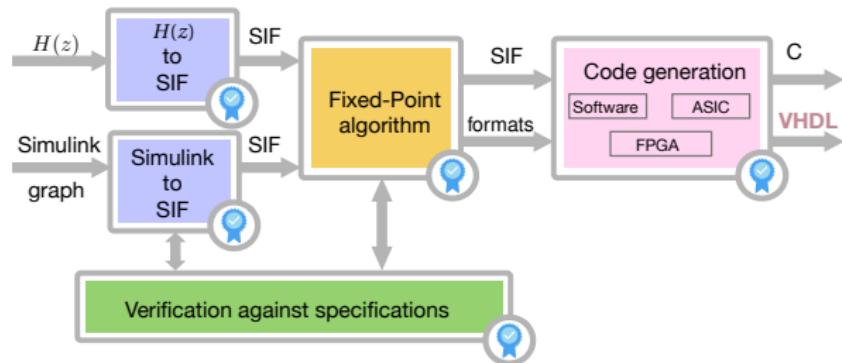
- Internal representation: SIF (matrix-based data-flow description)
- Rounding errors: unified, reliable and fast FxP algorithm generation
- Quantization errors: rigorous verification against frequency specs

Compiler overview



- Internal representation: SIF (matrix-based data-flow description)
- Rounding errors: unified, reliable and fast FxP algorithm generation
- Quantization errors: rigorous verification against frequency specs
- Software implementation: floating- and fixed-point C

Compiler overview



- Internal representation: SIF (matrix-based data-flow description)
- Rounding errors: unified, reliable and fast FxP algorithm generation
- Quantization errors: rigorous verification against frequency specs
- Software implementation: floating- and fixed-point C
- Hardware implementation: VHDL generation based on FloPoCo^a

^a<http://flopoco.gforge.inria.fr/>

FiXiF tool: under the hood

Front-end

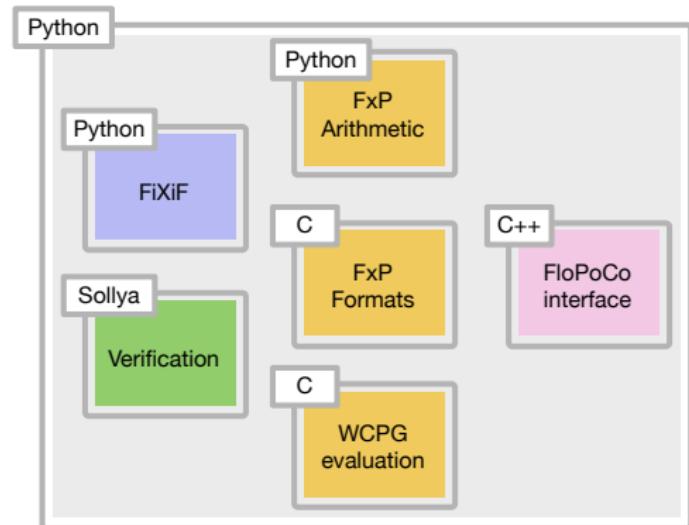
- Python
- Collection of classes

Back-end

- C/C++ libraries
- Sollya procedures
- FloPoCo tool

Requirements:

- MPFR, MPFI,
- LAPACK
- mpmath



FiXiF – 1

- Filter specifications and transfer function design

```
from fixif import *
g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])
H = g.to_dTF(ftype="butter", method="scipy")
F = Filter(tf=H)
```

FiXiF – 1

- Filter specifications and transfer function design

```
from fixif import *
g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])
H = g.to_dTF(ftype="butter", method="scipy")
F = Filter(tf=H)
```

Type: lowpass (Fs=48000Hz)

Freq. [0Hz,9600Hz]: Passband in [0.95dB, 1.05dB]

Freq. [12000Hz,24000.0Hz]: Stopband at -20dB

$$H(z) = \frac{4.58056194e-05 + 6.87084291e-04 z^{-1} + 4.8095900e-03 z^{-2} + \dots}{1.0 + -1.6206385z^{-1} + 3.20872535z^{-2} + \dots}$$

FiXiF – 1

- Filter specifications and transfer function design

```
from fixif import *
g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])
H = g.to_dTF(ftype="butter", method="scipy")
F = Filter(tf=H)
```

- Filter realization (algorithm)

```
R_SS = State_Space(Filter(tf=H))
R_SS_balanced = State_Space(Filter(tf=H), form="balanced")
R_DFII = DFII(Filter(tf=H), transposed=True)
R_LGS = LGS(Filter(tf=H), transposed=True)
```

State-Space and an error model

Take a State-Space algorithm

$$\mathcal{H} \quad \begin{cases} \mathbf{x} (k+1) = \mathbf{Ax} (k) + \mathbf{Bu}(k) \\ \mathbf{y} (k) = \mathbf{Cx} (k) + \mathbf{Du}(k) \end{cases}$$

State-Space and an error model

Take a State-Space algorithm and add rounding

$$\mathcal{H}^\diamond \left\{ \begin{array}{lcl} \mathbf{x}^\diamond(k+1) & = & \diamond_{m_x}(\mathbf{A}\mathbf{x}^\diamond(k) + \mathbf{B}\mathbf{u}(k)) \\ \mathbf{y}^\diamond(k) & = & \diamond_{m_y}(\mathbf{C}\mathbf{x}^\diamond(k) + \mathbf{D}\mathbf{u}(k)) \end{array} \right.$$

where \diamond_m is some operator ensuring faithful rounding:

$$|\diamond_m(x) - x| \leq 2^\ell$$

State-Space and an error model

Take a State-Space algorithm and add rounding

$$\mathcal{H}^{\diamond} \left\{ \begin{array}{lcl} \mathbf{x}^{\diamond}(k+1) & = & \mathbf{A}\mathbf{x}^{\diamond}(k) + \mathbf{B}\mathbf{u}(k) + \boldsymbol{\varepsilon}_x(k) \\ \mathbf{y}^{\diamond}(k) & = & \mathbf{C}\mathbf{x}^{\diamond}(k) + \mathbf{D}\mathbf{u}(k) + \boldsymbol{\varepsilon}_y(k) \end{array} \right.$$

with

$$|\boldsymbol{\varepsilon}_x(k)| \leq 2^{\ell_x} \quad \text{and} \quad |\boldsymbol{\varepsilon}_y(k)| \leq 2^{\ell_y}$$

State-Space and an error model

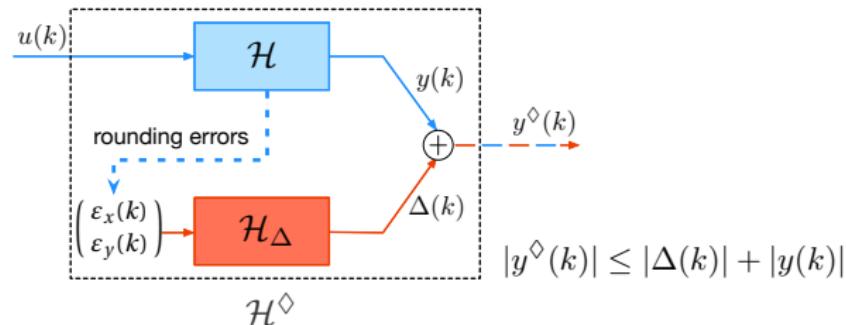
Take a State-Space algorithm and add rounding

$$\mathcal{H}^\diamond \left\{ \begin{array}{lcl} \mathbf{x}^\diamond(k+1) & = & \mathbf{A}\mathbf{x}^\diamond(k) + \mathbf{B}\mathbf{u}(k) + \boldsymbol{\varepsilon}_x(k) \\ \mathbf{y}^\diamond(k) & = & \mathbf{C}\mathbf{x}^\diamond(k) + \mathbf{D}\mathbf{u}(k) + \boldsymbol{\varepsilon}_y(k) \end{array} \right.$$

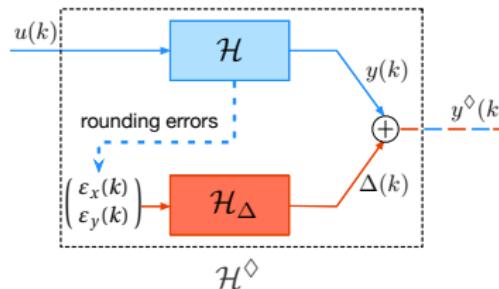
with

$$|\boldsymbol{\varepsilon}_x(k)| \leq 2^{\ell_x} \quad \text{and} \quad |\boldsymbol{\varepsilon}_y(k)| \leq 2^{\ell_y}$$

We express $\mathbf{x}(k) - \mathbf{x}^\diamond$ and $\mathbf{y}(k) - \mathbf{y}^\diamond(k)$... using a new filter:



Reliable implementation



$$|\Delta(k)| \leq \langle\langle H_\Delta \rangle\rangle \left(\frac{2^{\ell_x}}{2^{\ell_y}} \right)$$

Basic bricks:

- Reliable bound on a linear filter's output
 - Worst-Case Peak Gain measure [V-Lauter-Hilaire'15]
- Take into account error propagation
 - Iterative refinement of MSB [V-Lauter-Hilaire'16]
 - Never overestimate MSB by more than one

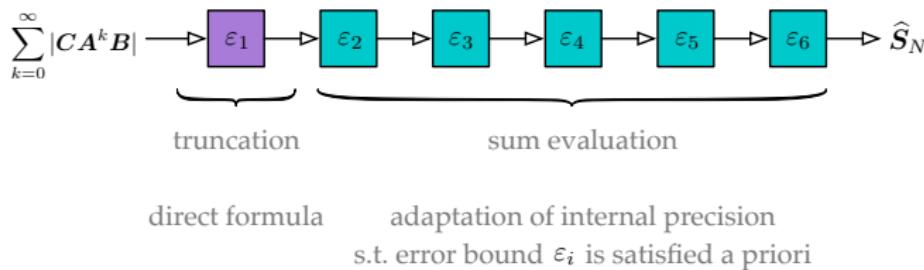
Worst-Case Peak Gain

- Matrix $\langle\langle \mathcal{S} \rangle\rangle = \sum_{k=0}^{\infty} |CA^k B|$ [Balakrishnyan-Boyd'91]

Problem: approximation and evaluation of the WCPG with an *a priori* absolute error bound ε

$$\left| \langle\langle \mathcal{S} \rangle\rangle - \langle\langle \widehat{\mathcal{S}} \rangle\rangle \right| \leq \left| \langle\langle \mathcal{S} \rangle\rangle - \langle\langle \mathcal{S}_N \rangle\rangle \right| + \left| \langle\langle \mathcal{S}_N \rangle\rangle - \langle\langle \widehat{\mathcal{S}} \rangle\rangle \right| < \varepsilon$$

Solution [V-Hilaire-Lauter'15]:



Techniques: *a priori* floating-point error analysis, verified inclusions for eigendecomposition, Gershgorin circles computation

FiXiF – 2

- Determine the Fixed-Point Formats

```
w = 16
while True:
    msb, lsb, error, additionalSteps = FXPF_ABCD(R_SS.A,
    R_SS.B, R_SS.C, R_SS.D, 1.0, w)
    w = w - 1
```

FiXiF – 2

- Determine the Fixed-Point Formats

```
w = 16
while True:
    msb, lsb, error, additionalSteps = FXPF_ABCD(R_SS.A,
    R_SS.B, R_SS.C, R_SS.D, 1.0, w)
    w = w - 1
```

Wordlength=[16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16]

Additional steps: 1
LSB: [-13 -13 -14 -14 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15]
Errors: [[0.00086691 0.00121799 0.00152309 0.00172836 0.00158205
0.00121137 0.00079471 0.00048683 0.00029988 0.0001935 0.00013235
0.00009573 0.00007329 0.00005811 0.00004509 0.00152433]]

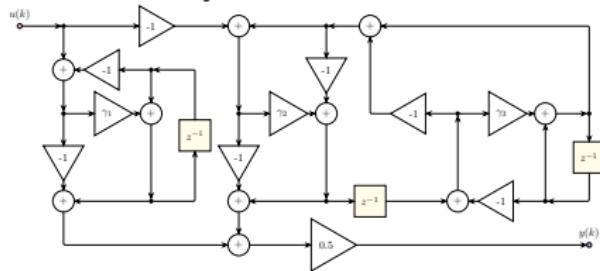
:

Wordlength=[5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5]

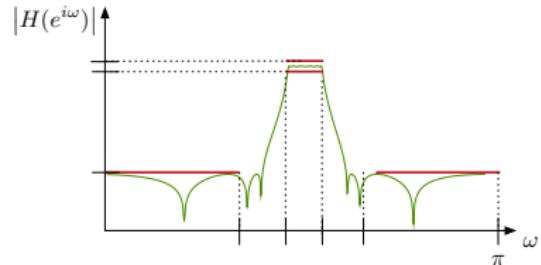
Error: LSB reached point when it is larger than initial MSB estimation
Error determining Fixed-Point Formats.

Verification of specifications

Implementation :



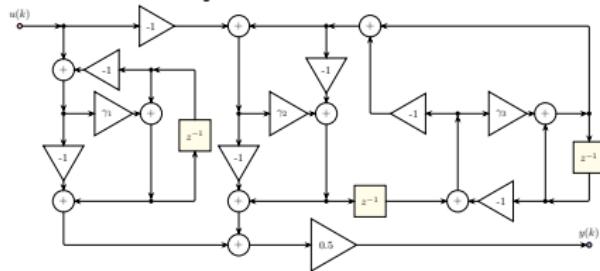
Verify the specifications:



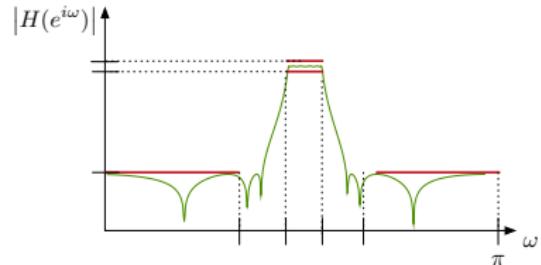
no false positives

Verification of specifications

Implementation :



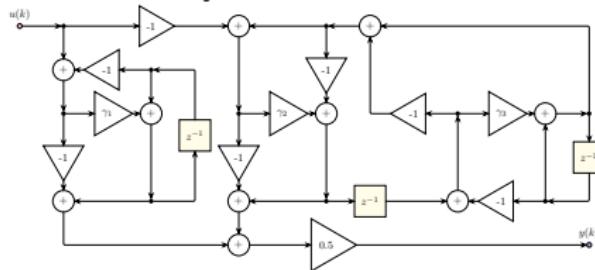
Verify the specifications:



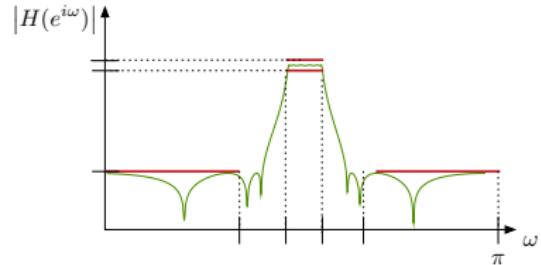
no false positives

Verification of specifications

Implementation :



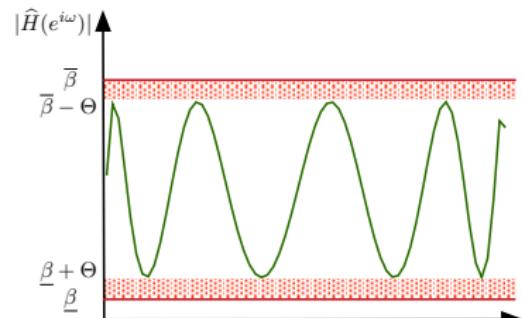
Verify the specifications:



no false positives

Solution [V-Lauter-Hilaire'17]

- MP approximation of $\widehat{H}(z)$
→ error Θ bounded using
WCPG [Balakrishnan'92]
- Verification of $\widehat{H}(z)$
→ proof of non-negativity of a
polynomial



FiXiF – 3

- Verification

```
g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])
CheckIfRealizationInGabarit(g, R_SS.quantize(16))
```

FiXiF – 3

- Verification

```
g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])
CheckIfRealizationInGabarit(g, R_SS.quantize(16))
```

Overall check okay: false

Computing this result took 2258ms

The following issues have been found:

Issue in subdomain $\Omega = \pi * [0; 0.4]$ at $\omega = \pi * [0; 5.3172964416593691658936355013934529087741417880979e-53]$:
 $|H(\exp(j*\omega))|$ should be between $10^{4.75e-2}$ and $10^{(1.05 / 20)}$ but evaluates to $[1.0000497795523700519233990284759435759640164376565; 1.0000497795523700519233990284759435759640164376566] = 10^{([4.323689366417695635232485092238116632596970479257e-4; 4.3236893664176956352324850922381166325969704866858e-4]/20)}$
:

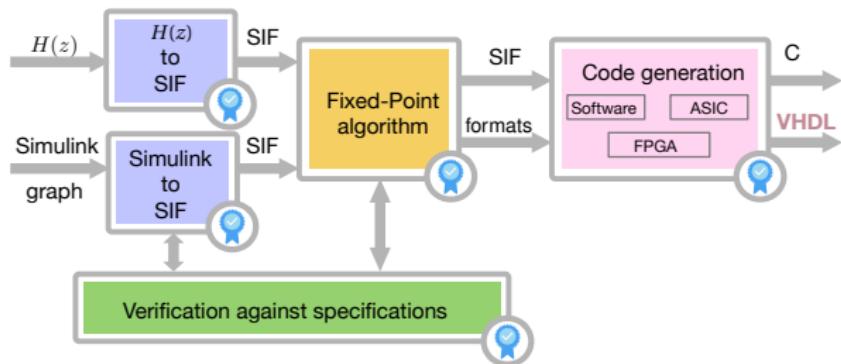
Behind the scenes

During these 2.26 seconds...

- Rational arithmetic
 - proof of non-negativity of a real polynomial
- Interval arithmetic
 - Verified Inclusions for the eigenvalues
- Dynamic Multiple-Precision arithmetic
 - Computation of Gershgorin circles
 - Evaluation of WCPG
- Floating-Point arithmetic
 - Computation of eigenvalues with LAPACK
 - Matrix arithmetic with *a priori* error bounds

... to verify an implementation in Fixed-Point arithmetic!

Back to the generator

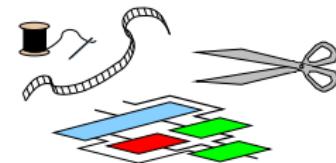


- Rigorous use of a combination of different arithmetics
- Numerical guarantees in time and frequency domains
- Unifying internal representation
- Easily extendable modular implementation

NEW Non-linear optimization to minimize circuit area [Hilaire, 2019]

Last-bit accurate hardware

FloPoCo



<http://flopoco.gforge.inria.fr/>

Joint work with

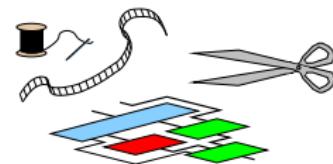
Florent de Dinechin
Florent.de-Dinechin@
insa-lyon.fr

Matei Istoan

Last-bit accurate hardware

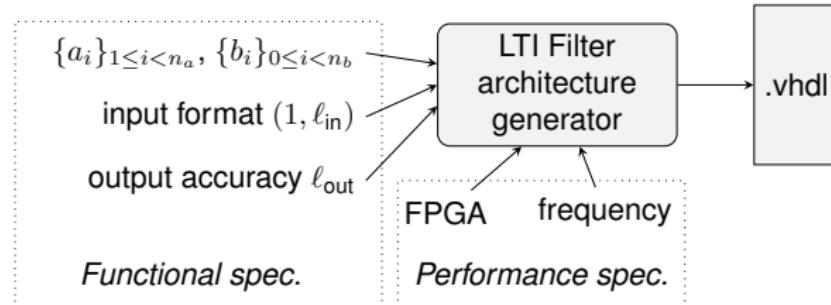
FIXIF
TOOLBOX

FloPoCo



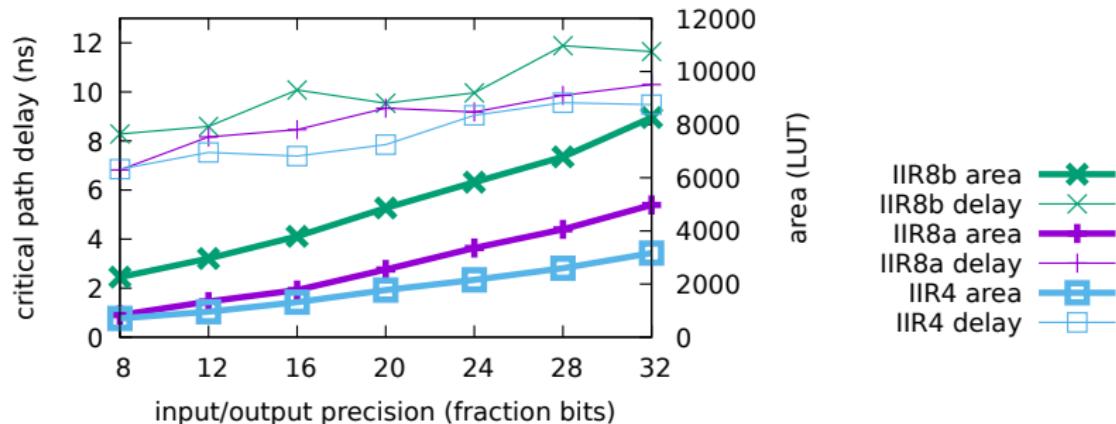
<http://flopoco.gforge.inria.fr/>

A push-button tool that generates filters accurate just-enough



The cost of reliability

Area and Delay vs. Accuracy



The cost of reliability

Pessimism of the method:

- (almost) worst-case input signal
- removing ≥ 2 bits yields failure

The cost of reliability

Pessimism of the method:

- (almost) worst-case input signal
- removing ≥ 2 bits yields failure

⇒ bounds are tight

The cost of reliability

Pessimism of the method:

- (almost) worst-case input signal
- removing ≥ 2 bits yields failure

⇒ bounds are tight

SQNR vs. Guaranteed accuracy

[Constantinides, 2004]

16 bit output
SQNR 49.3dB to 78.5dB
8 to 13 meaningful bits
16 bit multipliers
16/32 bit accumulators

Our approach

8 (13) bit output
error bound $\leq 2^{-8}$ ($\leq 2^{-13}$)
last-bit accurate
18 (23) bits datapaths

The cost of reliability

Pessimism of the method:

- (almost) worst-case input signal
- removing ≥ 2 bits yields failure

⇒ bounds are tight

SQNR vs. Guaranteed accuracy

[Constantinides, 2004]

16 bit output
SQNR 49.3dB to 78.5dB
8 to 13 meaningful bits
16 bit multipliers
16/32 bit accumulators

Our approach

8 (13) bit output
error bound $\leq 2^{-8}$ ($\leq 2^{-13}$)
last-bit accurate
18 (23) bits datapaths

⇒ we are competitive

FIXIF

TOOLBOX

“Digital filters reliable by construction”

<https://github.com/fixif>

Anastasia Volkova

anastasia.volikova@inria.fr

avolkova.org

Thibault Hilaire

thibault.hilaire@lip6.fr

docmatic.fr

Christoph Lauter

christoph.lauter@lip6.fr

christoph-lauter.org