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Impact of numerical errors

Funny fact:

• Broken YouTube

Not funny:

• Explosion of Ariane 5

• Boeing 787 problems

• Patriot missiles
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Digitization and the choices we make

• Formats and Arithmetic
• floating-point
• fixed-point

• Hardware and Software
• CPU/GPU/FPGA/ASIC
• language, compiler

• Generalist and App. Specific
• math. libraries†

• digital filters, control, neural
networks,. . .

PERFORMANCE

GUARANTEED 

ACCURACY

Reliability

Automation

Optimization

†Wed, 17:50 ”Sound Approximation of Programs with Elementary Functions”
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Signals are everywhere
Analog signals: continuous-time

Time

Digital signals: discrete-time

Time
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Linear digital filters

u(k) y(k)

H

Y (z)U(z)

Frequency domain

H (z ) =
−z−2 + . . .

1− z−1 + z−2 + . . .

coefficient quantization
in Fixed-Point arithmetic

Finite-precision
arithmetic operations

Time domain
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1 -1

+ + + -1

+ 0.5
y(k)

z−1

z−1

z−1

γ1 =

γ2 =

γ3 =

Constraints w.r.t. surface, speed, accuracy . . .

Circuit / Code
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Reliable and accurate digital filters
Majority of applications

• do not need numerical guarantee

• well-studied subject

• straightforward implementations

• commercial and free tools

Safety-critical applications

• require numerical guarantees

• have high(er) cost

• limited literature

• require expert knowledge from
engineers

• no out-of-box solution

Context: safety-critical applications

Goal: generate Fixed-Point codes reliable by construction

Means: interval, floating-point, multiple precision arithmetics
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Outline

• Finite precision, filters and what’s the issue

• FiXiF toolbox: digital filters reliable by construction
• Worst-case analysis
• Format choice
• Frequency spec verification

• Last-bit accurate hardware
• Cost of the reliability

A. Volkova Reliable and accurate computing 6/27
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Arithmetics

• Integer arithmetic:
y = Y w

2w−1 20

• Fixed-Point arithmetic:
y = Y · 2`
where ` is an implicit factor

• Floating-Point arithmetic:
y = (−1)s ·Y · 2e
where e is an explicit factor

• Interval arithmetic:
[y , y ] =

{
y ∈ R | y ≤ y ≤ y

}

• Multiple-Precision arithmetic: the size
of the mantissa varies dynamically
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Arithmetics

• Integer arithmetic:
y = Y

• Fixed-Point arithmetic:
y = Y · 2`
where ` is an implicit factor

For the implementation

• Floating-Point arithmetic:
y = (−1)s ·Y · 2e
where e is an explicit factor

For the error analysis

• Interval arithmetic:
[y , y ] =

{
y ∈ R | y ≤ y ≤ y

} For the error analysis

• Multiple-Precision arithmetic: the size
of the mantissa varies dynamically

For the error analysis
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Fixed-Point Arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

w wordlength hard constraint
m Most Significant Bit must choose
` Least Significant Bit must choose
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Fixed-Point Arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

w wordlength hard constraint
m Most Significant Bit must choose
` Least Significant Bit must choose

Example

Algorithm: vector normalization ‖v‖ =
√
v21 + v22 + v23

I/O format: w = 32,m = 15, ` = −16

Input: v = (125, 125, 125)

Overflow: 1252 + 1252 + 1252 = 46875 /∈ [−215; 215 − 1]

Output: depends on the system
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Fixed-Point Arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

w wordlength hard constraint
m Most Significant Bit must choose
` Least Significant Bit must choose

Format choice problem:

• fix wordlength

• guarantee no overflow

• maximize the precision

• bound the output error
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Filter algorithms
Typical algorithm: input u(k), internal state x (k), output y(k)

u(k)
b0

z�1

b1

z�1

bi

z�1

bn

y(k)

z�1

a1

z�1

ai

z�1

an

+

u(k) y(k)

• y(k) =
n∑

i=0
biu(k − i)−

n∑
i=1

aiy(k − i)

•
{

x (k + 1) = Ax (k) + bu(k)
y(k) = cx (k) + du(k)

• . . .

Math: ”It’s all the same thing”

”Not anymore!”, finite-precision.
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Example: a 15th order lowpass filter

Algorithm # coefficients
State-Space (canonical) 31
State-Space (balanced) 256

Direct Form II (transposed) 31
Li-Gevers-Sun 102
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Example: a 15th order lowpass filter

Algorithm # coefficients
State-Space (canonical) 31
State-Space (balanced) 256

Direct Form II (transposed) 31
Li-Gevers-Sun 102

Coefficient quantization Rounding errors
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Existing approaches on FxP
implementation

• simulations [Matlab], [D. Báez-López,2001]
• non-exhaustive

• noise propagation models [Menard, 2008]
• does not give intervals for outputs

• interval arithmetic [Carreras, 1999], [Vakili, 2013]
• wrapping effect for recursive systems

• affine arithmetic [Puschel, 2003], [Constantinides, 2006]
• need to bound `∞ norm of the filter’s output
• static unroll of the loops

A. Volkova Reliable and accurate computing 11/27



intel

TOOLBOX

“Digital filters reliable by construction ”

Available at https://github.com/fixif

Joint work with

Thibault Hilaire
thibault.hilaire@lip6.fr

Christoph Lauter
chirstoph.lauter@lip6.fr

A. Volkova Reliable and accurate computing 12/27
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Compiler overview

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Internal representation: SIF (matrix-based data-flow description)

• Rounding errors: unified, reliable and fast FxP algorithm generation

• Quantization errors: rigorous verification against frequency specs

• Software implementation: floating- and fixed-point C

• Hardware implementation: VHDL generation based on FloPoCo
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a
http://flopoco.gforge.inria.fr/
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FiXiF tool: under the hood

Front-end

• Python

• Collection of classes

Back-end

• C/C++ libraries

• Sollya procedures

• FloPoCo tool

Requirements:

• MPFR, MPFI,

LAPACK

• mpmath

Python

FxP 
Arithmetic

WCPG
evaluation 

C

Python

FxP 
Formats

C
FiXiF

Python

Verification

Sollya
FloPoCo
interface

C++

A. Volkova Reliable and accurate computing 14/27
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FiXiF – 1
◦ Filter specifications and transfer function design

from fixif import *

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

H = g.to_dTF(ftype="butter", method="scipy")

F = Filter(tf=H)

R_SS = State_Space(Filter(tf=H))

R_SS_balanced = State_Space(Filter(tf=H), form="balanced")

R_DFII = DFII(Filter(tf=H), transposed=True)

R_LGS = LGS(Filter(tf=H), transposed=True)

A. Volkova Reliable and accurate computing 15/27
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FiXiF – 1
◦ Filter specifications and transfer function design

from fixif import *

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])
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◦ Filter realization (algorithm)
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State-Space and an error model
Take a State-Space algorithm

H

♦

{
x

♦

(k + 1) =

♦mx (

Ax

♦

(k) + Bu(k)

) + εx (k)

y

♦

(k) =

♦my (

Cx

♦

(k) + Du(k)

) + εy(k)
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State-Space and an error model
Take a State-Space algorithm and add rounding

H♦
{

x♦(k + 1) = ♦mx (Ax♦(k) + Bu(k))

+ εx (k)

y♦(k) = ♦my (Cx♦(k) + Du(k))

+ εy(k)

where ♦m is some operator ensuring faithful rounding:

|♦m(x )− x | ≤ 2`
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)
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State-Space and an error model
Take a State-Space algorithm and add rounding

H♦
{

x♦(k + 1) =

♦mx (

Ax♦(k) + Bu(k)

)

+ εx (k)
y♦(k) =

♦my (

Cx♦(k) + Du(k)

)

+ εy(k)

with
|εx (k)| ≤ 2`x and |εy(k)| ≤ 2`y

We express x (k)− x♦ and y(k)− y♦(k) ... using a new filter:

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
"y (k)

∂

rounding errors

H⌃
|y⌃(k)|  |�(k)| + |y(k)||y⌃(k)|  |�q(k)| + |y(k)|
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Reliable implementation

H�

y⌃(k)

u(k)

y(k)

�(k)

H

µ
"x (k)
"y (k)

∂

rounding errors

H⌃
|∆(k)| ≤ 〈〈H∆〉〉

(
2`x

2`y

)

Basic bricks:
• Reliable bound on a linear filter’s output

• Worst-Case Peak Gain measure [V-Lauter-Hilaire’15]

• Take into account error propagation
• Iterative refinement of MSB [V-Lauter-Hilaire’16]

• Never overestimate MSB by more than one
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Worst-Case Peak Gain
• Matrix 〈〈S〉〉 =

∑∞
k=0

∣∣CAkB
∣∣ [Balakrishnyan-Boyd’91]

Problem: approximation and evaluation of the WCPG with an a
priori absolute error bound ε∣∣∣〈〈S〉〉 − 〈〈Ŝ〉〉

∣∣∣ ≤ |〈〈S〉〉 − 〈〈SN 〉〉|+
∣∣∣〈〈SN 〉〉 − 〈〈Ŝ〉〉

∣∣∣ < ε

Solution [V-Hilaire-Lauter’15]:
1X

k=0

|CAkB| bSN"1 "2 "3 "4 "5 "6

truncation

direct formula

sum evaluation 

adaptation of internal precision
s.t. error bound      is satisfied a priori"i

Techniques: a priori floating-point error analysis, verified
inclusions for eigendecomposition, Gershgorin circles computation
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FiXiF – 2
◦ Determine the Fixed-Point Formats

w = 16

while True:

msb, lsb, error, additionalSteps = FXPF_ABCD(R_SS.A,

R_SS.B, R_SS.C, R_SS.D, 1.0, w)

w = w - 1

Wordlength=[16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16]

Additional steps: 1

LSB: [-13 -13 -14 -14 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15]

Errors: [[ 0.00086691 0.00121799 0.00152309 0.00172836 0.00158205

0.00121137 0.00079471 0.00048683 0.00029988 0.0001935 0.00013235

0.00009573 0.00007329 0.00005811 0.00004509 0.00152433]]
.
.
.

Wordlength=[5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5]

Error: LSB reached point when it is larger than initial MSB estimation

Error determining Fixed-Point Formats.

A. Volkova Reliable and accurate computing 19/27



intel

FiXiF – 2
◦ Determine the Fixed-Point Formats

w = 16

while True:

msb, lsb, error, additionalSteps = FXPF_ABCD(R_SS.A,

R_SS.B, R_SS.C, R_SS.D, 1.0, w)

w = w - 1

Wordlength=[16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16]

Additional steps: 1

LSB: [-13 -13 -14 -14 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15]

Errors: [[ 0.00086691 0.00121799 0.00152309 0.00172836 0.00158205

0.00121137 0.00079471 0.00048683 0.00029988 0.0001935 0.00013235

0.00009573 0.00007329 0.00005811 0.00004509 0.00152433]]
.
.
.

Wordlength=[5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5]

Error: LSB reached point when it is larger than initial MSB estimation

Error determining Fixed-Point Formats.

A. Volkova Reliable and accurate computing 19/27



intel

Verification of specifications

Implementation :
u(k)

-1 + +

+ -1 -1

γ1 + γ2 + -1 γ3 +

-1

z−1

-1 z−1

+ + z−1 + -1

+ 0.5
y(k)

Verify the specifications:

!

��H(ei!)
��

⇡

no false positives

Solution [V-Lauter-Hilaire’17]

• MP approximation of Ĥ (z )
→ error Θ bounded using
WCPG [Balakrishnyan’92]

• Verification of Ĥ (z )
→ proof of non-negativity of a
polynomial

� + ⇥

� �⇥

�

�

| bH(ei!)|

!
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• MP approximation of Ĥ (z )
→ error Θ bounded using
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� + ⇥
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�

�
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FiXiF – 3
◦ Verification

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

CheckIfRealizationInGabarit(g, R_SS.quantize(16))

Overall check okay: false

Computing this result took 2258ms

The following issues have been found:

Issue in subdomain Omega = pi * [0;0.4] at omega = pi *

[0;5.3172964416593691658936355013934529087741417880979e-53]:

|H(exp(j*omega))| should be between 10^ 4.75e-2 and 10^ (1.05 / 20) but

evaluates to [1.0000497795523700519233990284759435759640164376565;

1.0000497795523700519233990284759435759640164376566] =

10^ ([4.323689366417695635232485092238116632596970479257e-4;

4.3236893664176956352324850922381166325969704866858e-4]/20)
.
.
.
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FiXiF – 3
◦ Verification

g = Gabarit(48000, [(0, 9600), (12000, None)], [(0.95, 1.05), -20])

CheckIfRealizationInGabarit(g, R_SS.quantize(16))

Overall check okay: false

Computing this result took 2258ms

The following issues have been found:

Issue in subdomain Omega = pi * [0;0.4] at omega = pi *

[0;5.3172964416593691658936355013934529087741417880979e-53]:

|H(exp(j*omega))| should be between 10^ 4.75e-2 and 10^ (1.05 / 20) but

evaluates to [1.0000497795523700519233990284759435759640164376565;

1.0000497795523700519233990284759435759640164376566] =

10^ ([4.323689366417695635232485092238116632596970479257e-4;

4.3236893664176956352324850922381166325969704866858e-4]/20)
.
.
.
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Behind the scenes
During these 2.26 seconds...
• Rational arithmetic

• proof of non-negativity of a real polynomial

• Interval arithmetic
• Verified Inclusions for the eigenvalues

• Dynamic Multiple-Precision arithmetic
• Computation of Gershgorin circles
• Evaluation of WCPG

• Floating-Point arithmetic
• Computation of eigenvalues with LAPACK
• Matrix arithmetic with a priori error bounds

. . . to verify an implementation in Fixed-Point arithmetic!
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Back to the generator

Verification against specifications

Simulink
to

SIF

Simulink

graph

SIF

H(z)
H(z)
to

SIF

SIF

formats

SIF

Fixed-Point
algorithm

Code generation
C

Software ASIC

FPGA
VHDL

• Rigorous use of a combination of different arithmetics

• Numerical guarantees in time and frequency domains

• Unifying internal representation

• Easily extendable modular implementation

NEW Non-linear optimization to minimize circuit area [Hilaire, 2019]
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Last-bit accurate hardware

FloPoCo

http://flopoco.gforge.inria.fr/

Joint work with

Florent de Dinechin
Florent.de-Dinechin@

insa-lyon.fr

Matei Istoan
Florent.de-Dinechin@insa-

lyon.fr
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Last-bit accurate hardware

FloPoCo

http://flopoco.gforge.inria.fr/

A push-button tool that generates filters accurate just-enough

LTI Filter
architecture
generator

{ai}1≤i<na
, {bi}0≤i<nb

input format (1, `in)

output accuracy `out
FPGA frequency

.vhdl

Functional spec. Performance spec.
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The cost of reliability
Area and Delay vs. Accuracy
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The cost of reliability
Pessimism of the method:
• (almost) worst-case input signal
• removing ≥ 2 bits yields failure

⇒ bounds are tight

SQNR vs. Guaranteed accuracy

[Constantinides, 2004] Our approach

16 bit output 8 (13) bit output
SQNR 49.3dB to 78.5dB error bound ≤ 2−8 (≤ 2−13)
8 to 13 meaningful bits last-bit accurate

16 bit multipliers
16/32 bit accumulators

18 (23) bits datapaths

⇒ we are competitive
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TOOLBOX

“Digital filters reliable by construction ”

https://github.com/fixif

Anastasia Volkova
anastasia.volkova@inria.fr

avolkova.org

Thibault Hilaire
thibault.hilaire@lip6.fr

docmatic.fr

Christoph Lauter
chirstoph.lauter@lip6.fr

christoph-lauter.org

https://github.com/fixif
anastasia.volkova@inria.fr
avolkova.org
thibault.hilaire@lip6.fr
docmatic.fr
chirstoph.lauter@lip6.fr
christoph-lauter.org
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