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1 Context of the PhD Thesis

Deep Learning is one of the most intensively and widely used predictive models in the field of
Machine Learning. Convolutional Neural Networks (CNNs) [1] have shown to achieve state-of-
the-art accuracy in computer vision [2] and have even surpassed the error rate of the human visual
cortex. These neural network techniques have quickly spread beyond computer vision to other
domains. For instance, deep CNNs have revolutionised tasks such as face recognition, object
detection, and medical image processing. Recurrent neural networks (RNNs) achieve state-of-
the-art results in speech recognition and natural language translation [3], while ensembles of
neural networks already offer superior predictions in financial portofolio management, playing
complex games [4] and self-driving cars [5].

Despite the benefits that DL brings to the table, there are still important challenges that
remain to be addressed if the computational workloads associated with NNs are to be deployed
on embedded edge devices that require improved energy efficiency. For instance, the amazing
performance of AlphaGo [4] required 4 to 6 weeks of training executed on 2000 CPUs and 250
GPUs for a total of about 600kW of power consumption (while the human brain of a Go player
requires about 20W). Recent work [6] analyzing the carbon footprint of current natural-language
processing models shows an alarming trend: training one huge Transformer model [7] for machine
translation emits the same amount of COs as five cars in their lifetimes (fuel included). Such
taxing demands are pushing both industry and academia to concentrate on designing custom
platforms for DL algorithms that target improved performance and/or energy efficiency.

One general way to increase the performance and efficiency in computing is through reduc-
ing the numerical precision of basic arithmetic operations. In the case of DL systems, there
are two main computational tasks: training and inference. Training requires vast quantities of
labelled data that are used to optimize the network for the task at hand, usually by way of
some form of stochastic gradient descent (SGD) algorithm. Inference, on the other hand, is
the actual application of the trained network, which can be replicated onto millions of devices.
Between the two, reducing numerical precision during inference has received the most attention
from the research community over the last years, with some promising results in certain appli-
cations [8,9]. Much less has been done for the training phase, the main reason being that the
effects of low-precision arithmetic on training algorithms are not yet well understood. This has



by no means stopped major players in the hardware space to start devising architectures that
offer increasing support for low-precision arithmetic. In the particular case of training, there are
already commercial platforms that mix 32-bit high precision floating-point computing with low
precision 16-bit formats for increased performance [10-12].

2 Objectives of the PhD Thesis

With this thesis, we want to conduct a thorough analysis of reduced numerical precision training
of DL systems. We plan to do this at two levels: arithmetic (use appropriate numerical formats
and bit widths for all the computations used during training) and algorithmic (by attempting
to improve the practical convergence properties of the optimization procedures used to train
neural networks).

A first objective is for the PhD student to build/augment a deep learning platform with cus-
tom precision arithmetic. This will require building customized floating-point operators down
to very few bits of exponent and mantissa which offer a desirable balance between accuracy and
energy efficiency. In parallel, the plan is to investigate how mixed precision support (i.e., hard-
ware support for several numeric formats with varying costs and accuracies) during successive
iterations of the SGD training algorithm impacts accuracy and performance.

With respect to existing works that generally consider predefined numeric formats, our aim
is to do a more in-depth analytical design space exploration by looking at the entire spectrum of
low precision floating-point arithmetic formats and how the working precision can be effectively
varied in-between training iterations. The student will also have the task of validating the
developed techniques trough a prototype of an accelerator for CNN training in the context of a
collaboration with other researchers in the team.

2.1 Precision tuning for neural network optimization

Current research on neural network training acceleration focuses on low precision variants of
SGD-based algorithms [13-17]. We plan to complement and improve on this existing work by
investigating the use of adaptive numerical precision levels during the course of the training
iterations’.

SGD-based algorithms are derived from first order optimization methods. In the DL world,
their simplicity and practical effectiveness for high dimensional problems have made them ubiqui-
tous. Nevertheless, at least from a theoretical perspective, second order methods (e.g. Newton-
based iterations) are very attractive due to their better convergence rates. In practical DL
scenarios, second-order methods have not found much use due to a perceived idea that they do
not generalize as well as SGD. Still, as recent work shows, this is not always necessarily the
case [18]. Based on this, it might also prove worthwhile to explore the use of mixed-precision
training for second-order DL methods.

Despite the success of backpropagation-powered training methods like SGD, there have been
a number of concerns regarding them over the years. An important one is the vanishing gradient
problem that results from the recursive application of the chain rule through consecutive layers of
a deep network. Another problem is the fact that backpropagation does not allow simultaneous
weight updates across layers, somewhat limiting parallel execution (although minibatch versions

Mncreasing the precision as the algorithm converges is a common way to increase result accuracy.



of SGD offer opportunities for parallelization). Such problems motivate research into alternative
training methods. Recent work focusing on alternating minimization methods is both welcome
and promising [19-24]. We plan to also focus on numerical precision tuned versions of such
algorithms.

2.2 CNN training acceleration through hierarchical modeling

Optimization of the training computations themselves by employing lower numerical precisions
is not the only way to increase performance and improve energy efficiency. Due to the iterative
nature of the algorithms used for learning, intelligent weight (parameter) initialization is also
crucial for ensuring practical convergence. In particular, adequate starting values for the network
weights limits the effects of exploding and /or vanishing gradients during backpropagation, which
can also be very problematic when lowering the computational precision. Seminal papers dealing
with effective weight initialization strategies include [25,26] for symmetric activation functions
and for the now more common rectifier linear unit (ReLU)-based activations.

In the case of CNNs, there is a current trend of employing network architectures that are
scaled up [27-30] from some highly optimized base model in order to bypass earlier manual, time
consuming network tuning labor. We think that such principled approaches for neural network
architecture design can be enhanced with more principled weight initialization strategies as well
(going beyond the aforementioned strategies of [25,26]). The basic idea we will explore is to train
a hierarchy of smaller networks with similar topology much faster. This would hopefully allow
us to extrapolate weight values for the much larger network that already offer a good testing
accuracy, which can then be improved upon in a much smaller number of training iterations.

3 Host Team: Cairn@Inria

The CAIRN team from Inria (the French national Research Institute for digital sciences) has a
long history of working on energy-efficient computing kernels. This project, through its target of
energy-efficient DL training, enriches the set of applications being worked on by the team, while
also leveraging on our experience working with custom numeric fixed-point and floating-point
formats. In particular, we have already demonstrated the potential benefit of small floating-
point formats for machine learning applications [31] and we consider them to also be applicable
in complex DL systems as well. The team is working on integrating ctfloat?, the custom
low precision floating-point library for high-level synthesis we have developed, to the N2D23 DL
framework developed by CEA LIST, with the goal of constructing energy efficient inference ker-
nels. As part of this PhD thesis proposal, the goal is to pursue and expand this work further
for the more complicated and expensive training tasks.
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